Show simple item record

dc.contributor.authorGuven, Sinem
dc.contributor.authorKundu, Gourab
dc.contributor.authorWeßels, Andrea
dc.contributor.authorWard, Jas S.
dc.contributor.authorRissanen, Kari
dc.contributor.authorSchoenebeck, Franziska
dc.date.accessioned2021-05-28T06:41:15Z
dc.date.available2021-05-28T06:41:15Z
dc.date.issued2021
dc.identifier.citationGuven, S., Kundu, G., Weßels, A., Ward, J. S., Rissanen, K., & Schoenebeck, F. (2021). Selective Synthesis of Z-Silyl Enol Ethers via Ni-Catalyzed Remote Functionalization of Ketones. <i>Journal of the American Chemical Society</i>, <i>143</i>(22), 8375-8380. <a href="https://doi.org/10.1021/jacs.1c01797" target="_blank">https://doi.org/10.1021/jacs.1c01797</a>
dc.identifier.otherCONVID_89722388
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/76013
dc.description.abstractWe report a remote functionalization strategy, which allows the Z-selective synthesis of silyl enol ethers of (hetero)aromatic and aliphatic ketones via Ni-catalyzed chain walking from a distant olefin site. The positional selectivity is controlled by the directionality of the chain walk and is independent of thermodynamic preferences of the resulting silyl enol ether. Our mechanistic data indicate that a Ni(I) dimer is formed under these conditions, which serves as a catalyst resting state and, upon reaction with an alkyl bromide, is converted to [Ni(II)-H] as an active chain-walking/functionalization catalyst, ultimately generating a stabilized η3-bound Ni(II) enolate as the key selectivity-controlling intermediate.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesJournal of the American Chemical Society
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherethers
dc.subject.otherhydrocarbons
dc.subject.othertransition metals
dc.subject.otherketones
dc.subject.otheroligomers
dc.titleSelective Synthesis of Z-Silyl Enol Ethers via Ni-Catalyzed Remote Functionalization of Ketones
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202105283259
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineOrgaaninen kemiafi
dc.contributor.oppiaineOrganic Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange8375-8380
dc.relation.issn0002-7863
dc.relation.numberinseries22
dc.relation.volume143
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysoketonit
dc.subject.ysokatalyytit
dc.subject.ysonikkeli
dc.subject.ysokemiallinen synteesi
dc.subject.ysooligomeeri
dc.subject.ysohiilivedyt
dc.subject.ysoeetterit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18652
jyx.subject.urihttp://www.yso.fi/onto/yso/p15480
jyx.subject.urihttp://www.yso.fi/onto/yso/p19926
jyx.subject.urihttp://www.yso.fi/onto/yso/p8468
jyx.subject.urihttp://www.yso.fi/onto/yso/p961
jyx.subject.urihttp://www.yso.fi/onto/yso/p1169
jyx.subject.urihttp://www.yso.fi/onto/yso/p3840
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1021/jacs.1c01797
jyx.fundinginformationF.S. acknowledges the RWTH Aachen University and the European Research Council (ERC-864849) for funding. K.R. acknowledges the Alexander von Humboldt Foundation (for the AvH Research Award) and J.S.W. the Finnish Cultural Foundation Central Fund (grant number 00201148) for financial support. Calculations were performed with computing resources granted by JARA-HPC from RWTH Aachen University under project “jara0091”.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0