Näytä suppeat kuvailutiedot

dc.contributor.authorMäntysaari, Heikki
dc.contributor.authorRoy, Kaushik
dc.contributor.authorSalazar, Farid
dc.contributor.authorSchenke, Björn
dc.date.accessioned2021-05-26T05:41:15Z
dc.date.available2021-05-26T05:41:15Z
dc.date.issued2021
dc.identifier.citationMäntysaari, H., Roy, K., Salazar, F., & Schenke, B. (2021). Gluon imaging using azimuthal correlations in diffractive scattering at the Electron-Ion Collider. <i>Physical Review D</i>, <i>103</i>(9), Article 094026. <a href="https://doi.org/10.1103/physrevd.103.094026" target="_blank">https://doi.org/10.1103/physrevd.103.094026</a>
dc.identifier.otherCONVID_89698776
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75952
dc.description.abstractWe study coherent diffractive photon and vector meson production in electron-proton and electron-nucleus collisions within the Color Glass Condensate effective field theory. We show that electron-photon and electron-vector meson azimuthal angle correlations are sensitive to nontrivial spatial correlations in the gluon distribution of the target, and perform explicit calculations using spatially dependent McLerran-Venugopalan initial color charge configurations coupled to the numerical solution of small x JIMWLK evolution equations. We compute the cross-section differentially in Q2 and |t| and find sizeable anisotropies in the electron-photon and electron-J/ψ azimuthal correlations (v1,2≈2–10%) in electron-proton collisions for the kinematics of the future Electron-Ion Collider. In electron-gold collisions these modulations are found to be significantly smaller (v1,2<0.1%). We also compute incoherent diffractive production where we find that the azimuthal correlations are sensitive to fluctuations of the gluon distribution in the target.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review D
dc.rightsCC BY 4.0
dc.titleGluon imaging using azimuthal correlations in diffractive scattering at the Electron-Ion Collider
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202105263209
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2470-0010
dc.relation.numberinseries9
dc.relation.volume103
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2021
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber314764
dc.relation.grantnumber824093
dc.relation.grantnumber824093
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/824093/EU//STRONG-2020
dc.subject.ysohiukkasfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15576
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/physrevd.103.094026
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramRIA Research and Innovation Action, H2020en
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramRIA Research and Innovation Action, H2020fi
jyx.fundinginformationH. M. is supported by the Academy of Finland Project No. 314764, and by the European Research Council project STRONG-2020 (Grant agreement No. 824093). F. S. and B. P. S. are supported under DOE Contract No. DE-SC0012704. Computing resources from CSC—IT Center for Science in Espoo, Finland and from the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533) were used in this work. F. S. and K. R. were also supported by the joint Brookhaven National Laboratory-Stony Brook University Center for Frontiers in Nuclear Science (CFNS).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0