Näytä suppeat kuvailutiedot

dc.contributor.authorMaula, Terhi
dc.contributor.authorVahvelainen, Nelli
dc.contributor.authorTossavainen, Helena
dc.contributor.authorKoivunen, Tuuli
dc.contributor.authorPöllänen, Marja T.
dc.contributor.authorJohansson, Anders
dc.contributor.authorPermi, Perttu
dc.contributor.authorIhalin, Riikka
dc.date.accessioned2021-05-21T05:46:25Z
dc.date.available2021-05-21T05:46:25Z
dc.date.issued2021
dc.identifier.citationMaula, T., Vahvelainen, N., Tossavainen, H., Koivunen, T., Pöllänen, M. T., Johansson, A., Permi, P., & Ihalin, R. (2021). Decreased temperature increases the expression of a disordered bacterial late embryogenesis abundant (LEA) protein that enhances natural transformation. <i>Virulence</i>, <i>12</i>(1), 1239-1257. <a href="https://doi.org/10.1080/21505594.2021.1918497" target="_blank">https://doi.org/10.1080/21505594.2021.1918497</a>
dc.identifier.otherCONVID_72844137
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75836
dc.description.abstractLate embryogenesis abundant (LEA) proteins are important players in the management of responses to stressful conditions, such as drought, high salinity, and changes in temperature. Many LEA proteins do not have defined three-dimensional structures, so they are intrinsically disordered proteins (IDPs) and are often highly hydrophilic. Although LEA-like sequences have been identified in bacterial genomes, the functions of bacterial LEA proteins have been studied only recently. Sequence analysis of outer membrane interleukin receptor I (BilRI) from the oral pathogen Aggregatibacter actinomycetemcomitans indicated that it shared sequence similarity with group 3/3b/4 LEA proteins. Comprehensive nuclearcgq magnetic resonance (NMR) studies confirmed its IDP nature, and expression studies in A. actinomycetemcomitans harboring a red fluorescence reporter protein-encoding gene revealed that bilRI promoter expression was increased at decreased temperatures. The amino acid backbone of BilRI did not stimulate either the production of reactive oxygen species from human leukocytes or the production of interleukin-6 from human macrophages. Moreover, BilRI-specific IgG antibodies could not be detected in the sera of A. actinomycetemcomitans culture-positive periodontitis patients. Since the bilRI gene is located near genes involved in natural competence (i.e., genes associated with the uptake of extracellular (eDNA) and its incorporation into the genome), we also investigated the role of BilRI in these events. Compared to wild-type cells, the ΔbilRI mutants showed a lower transformation efficiency, which indicates either a direct or indirect role in natural competence. In conclusion, A. actinomycetemcomitans might express BilRI, especially outside the host, to survive under stressful conditions and improve its transmission potential.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherLandes Bioscience; American Society for Virology
dc.relation.ispartofseriesVirulence
dc.rightsCC BY 4.0
dc.subject.othercold shock protein
dc.subject.otherlate embryogenesis
dc.subject.otherabundant protein
dc.subject.otherAggregatibacter actinomycetemcomitans
dc.subject.otherDNA transformation competence
dc.subject.otherNMR spectroscopy
dc.titleDecreased temperature increases the expression of a disordered bacterial late embryogenesis abundant (LEA) protein that enhances natural transformation
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202105213097
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1239-1257
dc.relation.issn2150-5594
dc.relation.numberinseries1
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber288235
dc.relation.grantnumber323435
dc.subject.ysolämpötila
dc.subject.ysobakteerit
dc.subject.ysoproteiinit
dc.subject.ysoNMR-spektroskopia
dc.subject.ysokylmänkestävyys
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2100
jyx.subject.urihttp://www.yso.fi/onto/yso/p1749
jyx.subject.urihttp://www.yso.fi/onto/yso/p4332
jyx.subject.urihttp://www.yso.fi/onto/yso/p26254
jyx.subject.urihttp://www.yso.fi/onto/yso/p3062
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1080/21505594.2021.1918497
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland [288235,323435,265609,303781,322817]; Federation of European Microbiological Societies; The Magnus Ehrnrooth foundation; Turku University Foundation ; The Paulo Foundation ; The Finnish Cultural Foundation; County Council of Västerbotten, Sweden [7003193].
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0