Näytä suppeat kuvailutiedot

dc.contributor.authorWolfmayr, Monika
dc.contributor.editorLindner, Ewald
dc.contributor.editorMicheletti, Alessandra
dc.contributor.editorNunes, Cláudia
dc.date.accessioned2021-05-05T10:27:32Z
dc.date.available2021-05-05T10:27:32Z
dc.date.issued2020
dc.identifier.citationWolfmayr, M. (2020). Optimal Heating of an Indoor Swimming Pool. In E. Lindner, A. Micheletti, & C. Nunes (Eds.), <i>Mathematical Modelling in Real Life Problems : Case Studies from ECMI-Modelling Weeks</i> (pp. 87-101). Springer. Mathematics in Industry, 33. <a href="https://doi.org/10.1007/978-3-030-50388-8_7" target="_blank">https://doi.org/10.1007/978-3-030-50388-8_7</a>
dc.identifier.otherCONVID_47420055
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75311
dc.description.abstractThis work presents the derivation of a model for the heating process of the air of a glass dome, where an indoor swimming pool is located in the bottom of the dome. The problem can be reduced from a three dimensional to a two dimensional one. The main goal is the formulation of a proper optimization problem for computing the optimal heating of the air after a given time. For that, the model of the heating process as a partial differential equation is formulated as well as the optimization problem subject to the time-dependent partial differential equation. This yields the optimal heating of the air under the glass dome such that the desired temperature distribution is attained after a given time. The discrete formulation of the optimization problem and a proper numerical method for it, the projected gradient method, are discussed. Finally, numerical experiments are presented which show the practical performance of the optimal control problem and its numerical solution method discussed.en
dc.format.extent165
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofMathematical Modelling in Real Life Problems : Case Studies from ECMI-Modelling Weeks
dc.relation.ispartofseriesMathematics in Industry
dc.rightsIn Copyright
dc.subject.otherheat equation
dc.subject.otherPDE-constrained optimization
dc.subject.othercontrol constraints
dc.subject.otherprojected gradient method
dc.subject.otherfinite element method
dc.subject.otherimplicit Euler method
dc.titleOptimal Heating of an Indoor Swimming Pool
dc.typebookPart
dc.identifier.urnURN:NBN:fi:jyu-202105052625
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.relation.isbn978-3-030-50387-1
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange87-101
dc.relation.issn1612-3956
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Springer
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber295897
dc.subject.ysosovellettu matematiikka
dc.subject.ysolämmitysjärjestelmät
dc.subject.ysomatemaattiset mallit
dc.subject.ysoelementtimenetelmä
dc.subject.ysomatemaattinen optimointi
dc.subject.ysonumeerinen analyysi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38113
jyx.subject.urihttp://www.yso.fi/onto/yso/p4775
jyx.subject.urihttp://www.yso.fi/onto/yso/p11401
jyx.subject.urihttp://www.yso.fi/onto/yso/p24565
jyx.subject.urihttp://www.yso.fi/onto/yso/p17635
jyx.subject.urihttp://www.yso.fi/onto/yso/p15833
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-030-50388-8_7
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationI gratefully acknowledge the financial support by the Academy of Finland under the grant 295897.
dc.type.okmA3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright