Parameter identification for heterogeneous materials by optimal control approach with flux cost functionals
Haslinger, J., Blaheta, R., & Mäkinen, R. A. E. (2021). Parameter identification for heterogeneous materials by optimal control approach with flux cost functionals. Mathematics and Computers in Simulation, 189, 55-68. https://doi.org/10.1016/j.matcom.2020.06.009
Julkaistu sarjassa
Mathematics and Computers in SimulationPäivämäärä
2021Tekijänoikeudet
© 2021 Elsevier
The paper deals with the identification of material parameters characterizing components in heterogeneous geocomposites provided that the interfaces separating different materials are known. We use the optimal control approach with flux type cost functionals. Since solutions to the respective state problems are not regular, in general, the original cost functionals are expressed in terms of integrals over the computational domain using the Green formula. We prove the existence of solutions to the optimal control problem and establish convergence results for appropriately defined discretizations. The rest of the paper is devoted to computational aspects, in particular how to handle high sensitivity of the problem on the accuracy of data gained by measurements.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0378-4754Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35990585
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
J. Haslinger and R. Blaheta acknowledge the support of the grant 19-11441S of the Grant Agency of the Czech Republic. The work of R. Blaheta was supported by the EURAD project, European Joint Programme (EJP) Cofund Action 847593.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Guaranteed lower bounds for cost functionals of time-periodic parabolic optimization problems
Wolfmayr, Monika (Elsevier, 2020)In this paper, a new technique is shown for deriving computable, guaranteed lower bounds of functional type (minorants) for two different cost functionals subject to a parabolic time-periodic boundary value problem. Together ... -
A nonsmooth primal-dual method with interwoven PDE constraint solver
Jensen, Bjørn; Valkonen, Tuomo (Springer, 2024)We introduce an efficient first-order primal-dual method for the solution of nonsmooth PDE-constrained optimization problems. We achieve this efficiency through not solving the PDE or its linearisation on each iteration ... -
Optimal Control Problems in Nonsmooth Solid and Fluid Mechanics : Computational Aspects
Haslinger, Jaroslav; Mäkinen, Raino A. E. (Springer, 2023)The paper is devoted to numerical realization of nonsmooth optimal control problems in solid and fluid mechanics with special emphasis on contact shape optimization and parameter identification in fluid flow models. ... -
Optimal Heating of an Indoor Swimming Pool
Wolfmayr, Monika (Springer, 2020)This work presents the derivation of a model for the heating process of the air of a glass dome, where an indoor swimming pool is located in the bottom of the dome. The problem can be reduced from a three dimensional to a ... -
Shape optimization utilizing consistent sensitivities
Toivanen, Jukka (University of Jyväskylä, 2010)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.