Show simple item record

dc.contributor.authorKuznetsov, N.V.
dc.contributor.authorLobachev, M.Y.
dc.contributor.authorYuldashev, M.V.
dc.contributor.authorYuldashev, R.V.
dc.contributor.authorKolumbán, G.
dc.date.accessioned2021-04-27T07:24:36Z
dc.date.available2021-04-27T07:24:36Z
dc.date.issued2020
dc.identifier.citationKuznetsov, N.V., Lobachev, M.Y., Yuldashev, M.V., Yuldashev, R.V., & Kolumbán, G. (2020). Harmonic balance analysis of pull-in range and oscillatory behavior of third-order type 2 analog PLLs. <i>IFAC-PapersOnLine</i>, <i>53</i>(2), 6378-6383. <a href="https://doi.org/10.1016/j.ifacol.2020.12.1773" target="_blank">https://doi.org/10.1016/j.ifacol.2020.12.1773</a>
dc.identifier.otherCONVID_67414173
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75203
dc.description.abstractThe most important design parameters of each phase-locked loop (PLL) are the local and global stability properties, and the pull-in range. To extend the pull-in range, engineers often use type 2 PLLs. However, the engineering design relies on approximations which prevent a full exploitation of the benefits of type 2 PLLs. Using an exact mathematical model and relying on a rigorous mathematical thinking this problem is revisited here and the stability and pull-in properties of the third-order type 2 analog PLLs are determined. Both the local and global stability conditions are derived. As a new idea, the harmonic balance method is used to derive the global stability conditions. That approach offers an extra advantage, the birth of unwanted oscillations can be also predicted. As a verification it is shown that the sufficient conditions of global stability derived by the harmonic balance method proposed here and the well-known direct Lyapunov approach coincide with each other, moreover, the harmonic balance predicts the birth of oscillations in the gap between the local and global stability conditions. Finally, an example when the conditions for local and global stability coincide, is considered.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesIFAC-PapersOnLine
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherphase-locked loop
dc.subject.otherthird-order PLL
dc.subject.othertype 2 PLL
dc.subject.othernonlinear analysis
dc.subject.otherharmonic balance method
dc.subject.otherdescribing function
dc.subject.otherglobal stability
dc.subject.otherbirth of oscillations
dc.subject.otherhold-in range
dc.subject.otherpull-in range
dc.subject.otherlock-in range
dc.subject.otherEgan conjecture
dc.titleHarmonic balance analysis of pull-in range and oscillatory behavior of third-order type 2 analog PLLs
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202104272513
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange6378-6383
dc.relation.issn2405-8963
dc.relation.numberinseries2
dc.relation.volume53
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysovärähtelyt
dc.subject.ysoelektroniset piirit
dc.subject.ysomatemaattiset mallit
dc.subject.ysosäätöteoria
dc.subject.ysosäätötekniikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p708
jyx.subject.urihttp://www.yso.fi/onto/yso/p953
jyx.subject.urihttp://www.yso.fi/onto/yso/p11401
jyx.subject.urihttp://www.yso.fi/onto/yso/p868
jyx.subject.urihttp://www.yso.fi/onto/yso/p5636
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.ifacol.2020.12.1773
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0