Show simple item record

dc.contributor.authorDanca, Marius-F.
dc.contributor.authorKuznetsov, Nikolay
dc.date.accessioned2021-03-24T06:37:09Z
dc.date.available2021-03-24T06:37:09Z
dc.date.issued2021
dc.identifier.citationDanca, M.-F., & Kuznetsov, N. (2021). Hidden Strange Nonchaotic Attractors. <i>Mathematics</i>, <i>9</i>(6), Article 652. <a href="https://doi.org/10.3390/math9060652" target="_blank">https://doi.org/10.3390/math9060652</a>
dc.identifier.otherCONVID_52388611
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74821
dc.description.abstractIn this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the bifurcation parameter, the hidden attractor is manifestly fractal with aperiodic dynamics, and even the finite-time largest Lyapunov exponent, a measure of trajectory separation with nearby initial conditions, is negative. To verify these characteristics numerically, the finite-time Lyapunov exponents, ‘0-1’ test, power spectra density, and recurrence plot are used. Beside the considered hidden strange nonchaotic attractor, a self-excited chaotic attractor and a quasiperiodic attractor of the Rabinovich–Fabrikant system are comparatively analyzed.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesMathematics
dc.rightsCC BY 4.0
dc.subject.otherhidden chaotic attractor
dc.subject.otherself-excited attractor
dc.subject.otherstrange nonchaotic attractor
dc.subject.otherRabinovich–Fabrikant system
dc.titleHidden Strange Nonchaotic Attractors
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202103242161
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn2227-7390
dc.relation.numberinseries6
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 by the authors. Licensee MDPI, Basel, Switzerland
dc.rights.accesslevelopenAccessfi
dc.subject.ysoattraktorit
dc.subject.ysofraktaalit
dc.subject.ysodynaamiset systeemit
dc.subject.ysokaaosteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38900
jyx.subject.urihttp://www.yso.fi/onto/yso/p6341
jyx.subject.urihttp://www.yso.fi/onto/yso/p38899
jyx.subject.urihttp://www.yso.fi/onto/yso/p6339
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/math9060652
jyx.fundinginformationThe work is supported by the Russian Science Foundation 19-41-02002 and St. Petersburg State University.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0