dc.contributor.author | Danca, Marius-F. | |
dc.contributor.author | Kuznetsov, Nikolay | |
dc.date.accessioned | 2021-03-24T06:37:09Z | |
dc.date.available | 2021-03-24T06:37:09Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Danca, Marius-F., & Kuznetsov, N. (2021). Hidden Strange Nonchaotic Attractors. <i>Mathematics</i>, <i>9</i>(6), Article 652. <a href="https://doi.org/10.3390/math9060652" target="_blank">https://doi.org/10.3390/math9060652</a> | |
dc.identifier.other | CONVID_52388611 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/74821 | |
dc.description.abstract | In this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the bifurcation parameter, the hidden attractor is manifestly fractal with aperiodic dynamics, and even the finite-time largest Lyapunov exponent, a measure of trajectory separation with nearby initial conditions, is negative. To verify these characteristics numerically, the finite-time Lyapunov exponents, ‘0-1’ test, power spectra density, and recurrence plot are used. Beside the considered hidden strange nonchaotic attractor, a self-excited chaotic attractor and a quasiperiodic attractor of the Rabinovich–Fabrikant system are comparatively analyzed. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | MDPI AG | |
dc.relation.ispartofseries | Mathematics | |
dc.rights | CC BY 4.0 | |
dc.subject.other | hidden chaotic attractor | |
dc.subject.other | self-excited attractor | |
dc.subject.other | strange nonchaotic attractor | |
dc.subject.other | Rabinovich–Fabrikant system | |
dc.title | Hidden Strange Nonchaotic Attractors | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202103242161 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2227-7390 | |
dc.relation.numberinseries | 6 | |
dc.relation.volume | 9 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2021 by the authors. Licensee MDPI, Basel, Switzerland | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | attraktorit | |
dc.subject.yso | fraktaalit | |
dc.subject.yso | dynaamiset systeemit | |
dc.subject.yso | kaaosteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38900 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6341 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38899 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6339 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.3390/math9060652 | |
jyx.fundinginformation | The work is supported by the Russian Science Foundation 19-41-02002 and St. Petersburg State University. | |
dc.type.okm | A1 | |