Functional DNA nanostructures for molecular transportation and biosensing
In this thesis, DNA nanostructures were constructed with the DNA origami method and their ability to function as stimuli-responsive nanoscale devices and molecular transport vehicles was studied. DNA origami structures can be utilized e.g. in the development of biosensing techniques and biomedical applications. For this, their functionality, suitability for the transportation and encapsulation of cargo, and structural stability in physiological conditions need to be thoroughly characterized. In the first experimental part of the work, two pH-responsive DNA origami devices were designed and their functionality was studied: DNA nanocapsules for molecular transportation and zipper-like DNA origami structures for biosensor development. Spectroscopic and electrochemical methods were applied to confirm that the conformational state of the devices could be controlled accurately and repeatedly with the solution pH by functionalizing the devices site-specifically with DNA triplexes. For studying molecular transportation, the nanocapsules were loaded with gold nanoparticles and enzymes, and an encapsulation and display of the loaded cargo could be induced by changing the solution pH. In addition, the binding of the anticancer drug doxorubicin to DNA origami structures was characterized, yielding improved understanding on how DNA origami structures can be harnessed for transportation of DNA intercalators. Finally, the structural stability of the developed DNA origami nanocarriers under destabilizing physiological factors was studied. The nanocapsule was shown to remain functional in physiologically relevant salt conditions. The nuclease digestion rates of doxorubicin-loaded DNA origami structures depended both on the DNA origami superstructure and the doxorubicin loading density, yielding doxorubicin release at customizable rates. The detailed biophysical and biochemical characterization of functional DNA origami nanostructures presented in this thesis will help building a solid ground for the development of DNA nanostructure –based applications.
...
Tässä väitöskirjatyössä valmistettiin DNA-origamitekniikan avulla DNA-nanorakenteita ja tutkittiin niiden toimintaa ympäristön ärsykkeisiin reagoivina laitteina ja molekyylikuljettimina. DNA-origamirakenteita voidaan käyttää esimerkiksi biosensoritekniikoiden ja biolääketieteen menetelmien kehittämiseen. Näitä sovelluskohteita varten niiden toiminnalisuus, soveltuvuus (lääkaine)molekyylien kuljetukseen ja kapselointiin sekä rakenteellinen kestävyys fysiologisissa olosuhteissa täytyy määrittää läpikotaisesti. Työn ensimmäisessä kokeellisessa osassa suunniteltiin kaksi pH-responsiivista DNA-origamilaitetta ja tutkittiin niiden rakennemuutoksia pH:n muuttuessa. Työssä valmistettiin DNA-nanokapseli molekyylien kuljetukseen ja vetoketjumainen DNA-origamirakenne biosensoreiden kehitykseen. Spektroskooppisten ja sähkökemiallisten mittausten avulla määritettiin, että paikkaspesifisesti DNA-kolmoisjuosteilla funktionalisoitujen laitteiden rakenteellista tilaa voitiin hallita tarkasti ja toistettavasti pH:n avulla. Molekyylikuljetusta tutkittiin lataamalla DNA-nanokapselit kultananopartikkeleilla ja entsyymeillä, jotka voitiin sulkea kapseleiden sisälle ja paljastaa ympäristölle pH:ta muuttamalla. Lisäksi karakterisoitiin syöpälääke doksorubisiinin sitoutumista DNA-origameihin ja saatiin tarkempaa tietoa siitä, miten DNA-nanorakenteita voidaan hyödyntää DNA-interkalaattorien kuljetuksessa. Lopuksi tutkittiin valmistettujen DNA-nanokuljettimien kestävyyttä fysiologisissa olosuhteissa. Nanokapselit pysyivät toiminnallisina fysiologisissa suolapitoisuuksissa. Doksorubisiinilla ladattujen DNA-origamien muoto ja niihin sitoutuneen doksorubisiinin määrä vaikuttivat siihen, miten nopeasti rakenteet hajosivat nukleaasien vaikutuksesta. Tämän seurauksena doksorubisiini vapautui ympäristöön kustomoitavilla nopeuksilla. Työssä esitetty yksityiskohtainen biofysikaalinen ja –kemiallinen karakterisointi luo kokonaisvaltaista pohjaa DNA nanorakenteiden sovelluskehitykselle.
...




ISBN
978-951-39-8556-1Contains publications
- Artikkeli I: Ijäs, H., Nummelin, S., Shen, B., Kostiainen, M. A., & Linko, V. (2018). Dynamic DNA Origami Devices : from Strand-Displacement Reactions to External-Stimuli Responsive Systems. International Journal of Molecular Sciences, 19 (7), 2114. DOI: 10.3390/ijms19072114
- Artikkeli II: Ijäs, H., Hakaste, I., Shen, B., Kostiainen, M. A., & Linko, V. (2019). Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo. ACS Nano, 13 (5), 5959-5967. DOI: 10.1021/acsnano.9b01857
- Artikkeli III: Williamson P., Ijäs H., Shen B., Corrigan D.K. & Linko V. 2021. Probing the conformational states of a pH-sensitive DNA origami zipper via label-free electrochemical methods. Submitted manuscript.
- Artikkeli IV: Ijäs H., Shen B., Heuer-Jungemann A., Keller A., Kostiainen M.A., Liedl T., Ihalainen J.A. & Linko V. 2021. Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release. Nucleic Acids Research. DOI: 10.1093/nar/gkab097
Keywords
Metadata
Show full item recordCollections
- Väitöskirjat [3178]
Related items
Showing items with similar title or keywords.
-
Nanodevices by DNA based gold nanostructures
Tapio, Kosti (University of Jyväskylä, 2017)In this thesis DNA based structures were utilized to create gold nanostructures for nanosensing and nanoelectronic applications. In the past, both of these fields have been dominated by the conventional lithography methods, ... -
Plasmonic nanosensor array for multiplexed DNA-based pathogen detection
Zopf, David; Pittner, Angelina; Dathe, André; Grosse, Norman; Csáki, Andrea; Arstila, Kai; Toppari, Jussi; Schott, Walter; Dontsov, Denis; Uhlrich, Günter; Fritzsche, Wolfgang; Stranik, Ondrej (American Chemical Society, 2019)In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots ... -
Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo
Ijäs, Heini; Hakaste, Iiris; Shen, Boxuan; Kostiainen, Mauri A.; Linko, Veikko (American Chemical Society, 2019)DNA nanotechnology provides a toolbox for creating custom and precise nanostructures with nanometer-level accuracy. These nano-objects are often static by nature and serve as versatile templates for assembling various ... -
DNA Origami-Mediated Substrate Nanopatterning of Inorganic Structures for Sensing Applications
Piskunen, Petteri; Shen, Boxuan; Julin, Sofia; Ijäs, Heini; Toppari, Jussi J.; Kostiainen, Mauri A.; Linko, Veikko (MyJove Corp., 2019)Structural DNA nanotechnology provides a viable route for building from the bottom-up using DNA as construction material. The most common DNA nanofabrication technique is called DNA origami, and it allows high-throughput ... -
Recombinant nanocapsid for targeted theranostic delivery
Stark, Marie (University of Jyväskylä, 2017)Developments in diagnostic and therapeutic delivery are trending towards molecular level targeting with nano-platforms. Targeted delivery reduces generalized distribution by localizing diagnostic and/or therapeutic ...