Show simple item record

dc.contributor.authorVähäkainu, Petri
dc.contributor.authorLehto, Martti
dc.contributor.authorKariluoto, Antti
dc.date.accessioned2021-02-12T08:57:28Z
dc.date.available2021-02-12T08:57:28Z
dc.date.issued2020
dc.identifier.citationVähäkainu, P., Lehto, M., & Kariluoto, A. (2020). Adversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems. <i>Journal of Information Warfare</i>, <i>19</i>(4), 57-69. <a href="https://www.jinfowar.com/journal/volume-19-issue-4/adversarial-attack%E2%80%99s-impact-machine-learning-model-cyber-physical-systems" target="_blank">https://www.jinfowar.com/journal/volume-19-issue-4/adversarial-attack%E2%80%99s-impact-machine-learning-model-cyber-physical-systems</a>
dc.identifier.otherCONVID_42349663
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74117
dc.description.abstractDeficiency of correctly implemented and robust defence leaves Internet of Things devices vulnerable to cyber threats, such as adversarial attacks. A perpetrator can utilize adversarial examples when attacking Machine Learning models used in a cloud data platform service. Adversarial examples are malicious inputs to ML-models that provide erroneous model outputs while appearing to be unmodified. This kind of attack can fool the classifier and can prevent ML-models from generalizing well and from learning high-level representation; instead, the ML-model learns superficial dataset regularity. This study focuses on investigating, detecting, and preventing adversarial attacks towards a cloud data platform in the cyber-physical context.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherPeregrine Technical Solutions
dc.relation.ispartofseriesJournal of Information Warfare
dc.relation.urihttps://www.jinfowar.com/journal/volume-19-issue-4/adversarial-attack%E2%80%99s-impact-machine-learning-model-cyber-physical-systems
dc.rightsIn Copyright
dc.subject.otherArtificial Intelligence
dc.subject.othercloud data platform
dc.subject.otheradversarial attacks
dc.subject.otherdefence mechanisms
dc.subject.othermachine learning
dc.titleAdversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202102121545
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange57-69
dc.relation.issn1445-3312
dc.relation.numberinseries4
dc.relation.volume19
dc.type.versionpublishedVersion
dc.rights.copyright© Peregrine Technical Solutions, 2020
dc.rights.accesslevelopenAccessfi
dc.subject.ysoesineiden internet
dc.subject.ysokyberturvallisuus
dc.subject.ysotekoäly
dc.subject.ysopilvipalvelut
dc.subject.ysoverkkohyökkäykset
dc.subject.ysotietoturva
dc.subject.ysokoneoppiminen
dc.subject.ysoälytekniikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27206
jyx.subject.urihttp://www.yso.fi/onto/yso/p26189
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p24167
jyx.subject.urihttp://www.yso.fi/onto/yso/p27466
jyx.subject.urihttp://www.yso.fi/onto/yso/p5479
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p27260
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright