Matriisin singulaariarvohajotelma
Authors
Date
2021Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tämän tutkielman tarkoituksena on esitellä ja todistaa matriisin singulaariarvohajotelma, jonka mukaan jokainen m x n matriisi A voidaan esittää muodosssa A=USV^T, missä matriisit U ja V ovat ortogonaalisia ja S on diagonaalimatriisi. Tuloksen muotoa voidaan verrata matriisin diagonalisoituvuuteen. Diagonalisoituvuudesta puhuttaessa matriisin täytyy kuitenkin olla neliömatriisi ja lisäksi kaikki neliömatriisit eivät ole diagonalisoituvia. Singulaariarvohajotelma on olemassa kaikille m x n matriiseille. Tutkielmassa tarvittavia tuloksia esitellään tutkielman alussa lineaarialgebran ja matriisiteorian kannalta merkittävien neljän aliavaruuden avulla. Lisäksi tutustutaan näiden aliavaruuksien rooliin matriisin A toiminnassa. Singulaariarvohajotelmaan liittyy olennaisena osana matriisin A singulaariarvot, jotka ovat matriisin A^TA ominaisarvojen neliöjuuret. Ennen singulaariarvohajotelman esittelyä tutkielmassa tutustutaankin matriisin A^TA ominaisuuksiin, joita tarvitaan myöhemmin singulaariarvohajotelman todistuksessa. Tarkoituksena on myös esitellä matriisin singulaariarvohajotelman sovelluksia. Ensimmäisenä sovelluksena on matriisin pseudoinverssi, jota voidaan pitää käänteismatriisin yleistyksenä. Pseudoinverssin avulla voidaan ratkaista lineaarisia yhtälöryhmiä, jotka ovat muotoa Ax=b. Tällä yhtälöryhmällä ei kuitenkaan aina ole ratkaisua. Tällöin voidaan kuitenkin etsiä vektoria x’, joka minimoi lausekkeen ||b-Ax’||^2. Tätä vektoria x’ kutsutaan pienimmän neliösumman ratkaisuksi. Osoittautuu, että pseudoinverssin avulla löydetään myös pienimmän neliösumman ratkaisu. Singulaariarvohajotelman sovelluksena on myös matriisin approksimointi alemman asteen matriisilla. Tarkoituksena on esitellä tulos, jonka mukaan matriisin singulaariarvohajotelman avulla matriisille saadaan paras alemman asteen approksimaatio Frobenius normin suhteen. Tutkielman lopuksi sovelletaan matriisin alemman asteen approksimaatiota valokuvan häviöllisessä pakkaamisessa.
...


Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [24946]
Related items
Showing items with similar title or keywords.
-
Matriisin Hessenbergin muoto
Holopainen, Niko (2013) -
Matriisin Jordanin muoto
Artemenko, Maryia (2020)Tämä matematiikan pro gradu -tutkielma käsittelee matriisin Jordanin normaalimuotoa. Jordanin muoto on matriisin muoto, joka on lähempänä diagonaalimuotoa. Se on hyödyllinen tapauksessa, kun matriisi ei ole diagonalisoituva. ... -
Kompleksiset vektoriavaruudet
Särkijärvi, Tuomas (2020)Tässä matematiikan pro gradu -tutkielmassa perehdytään kompleksisiin vektoriavaruuksiin ja sivutaan myös niiden sovelluskohteita. Tutkielman tavoitteena on esitellä riittävät tiedot, jotta lukija voi muodostaa eheän ... -
Perronin ja Frobeniuksen lause
Huupponen, Tuukka (2023)Tässä tutkielmassa perehdytään matriisiteoriaan. Tarkastelu keskittyy neliömatriiseihin, niiden ominaisarvoihin ja niitä vastaaviin ominaisvektoreihin. Tarkastelu rajataan kahteen osaan, joista toiseen esitetään ... -
Itsetarkistuvat STACK-tehtävät kurssille Lineaarinen algebra ja geometria 1
Räihä, Sauli (2019)Tässä pro gradu -tutkielmassa esitellään Jyväskylän yliopiston matematiikan ja tilastotieteen laitoksella luennoitavalle kurssille Lineaarinen algebra ja geometria 1 luotu STACK-tehtäväkokoelma ja työprosessin eri vaiheita. ...