University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Matriisin singulaariarvohajotelma

Thumbnail
View/Open
1.1 Mb

Downloads:  
Show download detailsHide download details  
Authors
Kirsilä, Jaakko
Date
2021
Discipline
Matematiikan opettajankoulutusTeacher education programme in Mathematics
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
Tämän tutkielman tarkoituksena on esitellä ja todistaa matriisin singulaariarvohajotelma, jonka mukaan jokainen m x n matriisi A voidaan esittää muodosssa A=USV^T, missä matriisit U ja V ovat ortogonaalisia ja S on diagonaalimatriisi. Tuloksen muotoa voidaan verrata matriisin diagonalisoituvuuteen. Diagonalisoituvuudesta puhuttaessa matriisin täytyy kuitenkin olla neliömatriisi ja lisäksi kaikki neliömatriisit eivät ole diagonalisoituvia. Singulaariarvohajotelma on olemassa kaikille m x n matriiseille. Tutkielmassa tarvittavia tuloksia esitellään tutkielman alussa lineaarialgebran ja matriisiteorian kannalta merkittävien neljän aliavaruuden avulla. Lisäksi tutustutaan näiden aliavaruuksien rooliin matriisin A toiminnassa. Singulaariarvohajotelmaan liittyy olennaisena osana matriisin A singulaariarvot, jotka ovat matriisin A^TA ominaisarvojen neliöjuuret. Ennen singulaariarvohajotelman esittelyä tutkielmassa tutustutaankin matriisin A^TA ominaisuuksiin, joita tarvitaan myöhemmin singulaariarvohajotelman todistuksessa. Tarkoituksena on myös esitellä matriisin singulaariarvohajotelman sovelluksia. Ensimmäisenä sovelluksena on matriisin pseudoinverssi, jota voidaan pitää käänteismatriisin yleistyksenä. Pseudoinverssin avulla voidaan ratkaista lineaarisia yhtälöryhmiä, jotka ovat muotoa Ax=b. Tällä yhtälöryhmällä ei kuitenkaan aina ole ratkaisua. Tällöin voidaan kuitenkin etsiä vektoria x’, joka minimoi lausekkeen ||b-Ax’||^2. Tätä vektoria x’ kutsutaan pienimmän neliösumman ratkaisuksi. Osoittautuu, että pseudoinverssin avulla löydetään myös pienimmän neliösumman ratkaisu. Singulaariarvohajotelman sovelluksena on myös matriisin approksimointi alemman asteen matriisilla. Tarkoituksena on esitellä tulos, jonka mukaan matriisin singulaariarvohajotelman avulla matriisille saadaan paras alemman asteen approksimaatio Frobenius normin suhteen. Tutkielman lopuksi sovelletaan matriisin alemman asteen approksimaatiota valokuvan häviöllisessä pakkaamisessa. ...
Keywords
matriisin singulaariarvohajotelma singulaariarvot pseudoinverssi pienimmän neliösumman ratkaisu matriisin approksimointi kuvan häviöllinen pakkaaminen matriisit matematiikka matriisilaskenta ominaisarvot approksimointi
URI

http://urn.fi/URN:NBN:fi:jyu-202102111528

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24946]

Related items

Showing items with similar title or keywords.

  • Matriisin Hessenbergin muoto 

    Holopainen, Niko (2013)
  • Matriisin Jordanin muoto 

    Artemenko, Maryia (2020)
    Tämä matematiikan pro gradu -tutkielma käsittelee matriisin Jordanin normaalimuotoa. Jordanin muoto on matriisin muoto, joka on lähempänä diagonaalimuotoa. Se on hyödyllinen tapauksessa, kun matriisi ei ole diagonalisoituva. ...
  • Kompleksiset vektoriavaruudet 

    Särkijärvi, Tuomas (2020)
    Tässä matematiikan pro gradu -tutkielmassa perehdytään kompleksisiin vektoriavaruuksiin ja sivutaan myös niiden sovelluskohteita. Tutkielman tavoitteena on esitellä riittävät tiedot, jotta lukija voi muodostaa eheän ...
  • Perronin ja Frobeniuksen lause 

    Huupponen, Tuukka (2023)
    Tässä tutkielmassa perehdytään matriisiteoriaan. Tarkastelu keskittyy neliömatriiseihin, niiden ominaisarvoihin ja niitä vastaaviin ominaisvektoreihin. Tarkastelu rajataan kahteen osaan, joista toiseen esitetään ...
  • Itsetarkistuvat STACK-tehtävät kurssille Lineaarinen algebra ja geometria 1 

    Räihä, Sauli (2019)
    Tässä pro gradu -tutkielmassa esitellään Jyväskylän yliopiston matematiikan ja tilastotieteen laitoksella luennoitavalle kurssille Lineaarinen algebra ja geometria 1 luotu STACK-tehtäväkokoelma ja työprosessin eri vaiheita. ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre