Metal-organic magnets with large coercivity and ordering temperatures up to 242°C
Perlepe, P., Oyarzabal, I., Mailman, A., Yquel, M., Platunov, M., Dovgaliuk, I., Rouzières, M., Négrier, P., Mondieig, D., Suturina, E. A., Dourges, M.-A., Bonhommeau, S., Musgrave, R. A., Pedersen, K. S., Chernyshov, D., Wilhelm, F., Rogalev, A., Mathonière, C., & Clérac, R. (2020). Metal-organic magnets with large coercivity and ordering temperatures up to 242°C. Science, 370(6516), 587-592. https://doi.org/10.1126/science.abb3861
Published in
ScienceAuthors
Date
2020Copyright
© 2020 the Authors
Magnets derived from inorganic materials (e.g., oxides, rare-earth–based, and intermetallic compounds)
are key components of modern technological applications. Despite considerable success in a broad
range of applications, these inorganic magnets suffer several drawbacks, including energetically
expensive fabrication, limited availability of certain constituent elements, high density, and poor
scope for chemical tunability. A promising design strategy for next-generation magnets relies on the
versatile coordination chemistry of abundant metal ions and inexpensive organic ligands. Following this
approach, we report the general, simple, and efficient synthesis of lightweight, molecule-based magnets
by postsynthetic reduction of preassembled coordination networks that incorporate chromium metal
ions and pyrazine building blocks. The resulting metal-organic ferrimagnets feature critical temperatures
up to 242°C and a 7500-oersted room-temperature coercivity
Publisher
American Association for the Advancement of Science (AAAS)ISSN Search the Publication Forum
0036-8075Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/43466478
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Academy Project, AoF
Additional information about funding
This work was supported by the University of Bordeaux, the Région Nouvelle Aquitaine, Quantum Matter Bordeaux, and the Centre National de la Recherche Scientifique (CNRS). I.O. and R.C. are grateful to the Basque Government for I.O.'s postdoctoral grant. K.S.P. thanks the VILLUM FONDEN for a Villum Young Investigator grant (15374). A.M. thanks JYU and the Academy of Finland (project 289172) for support.

License
Related items
Showing items with similar title or keywords.
-
Theoretical and computational studies of magnetic anisotropy and exchange coupling in molecular systems
Mansikkamäki, Akseli (University of Jyväskylä, 2018)The field of molecular magnetism studies the magnetic properties of molecular systems as opposed to conventional metal-based magnets. The high chemical modifiability of the constituting molecules makes such materials highly ... -
Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet
Guo, Fu-Sheng; Day, Benjamin M.; Chen, Yan-Cong; Tong, Ming-Liang; Mansikkamäki, Akseli; Layfield, Richard A. (American Association for the Advancement of Science, 2018)Single-molecule magnets (SMMs) containing only one metal center may represent the lower size limit for molecule-based magnetic information storage materials. Their current 15 drawback is that all SMMs require liquid-helium ... -
Asymmetric Ring Opening in Tetrazine‐based Ligand Affording a Tetranuclear Opto‐Magnetic Ytterbium Complex
Richardson, Paul; Marin, Riccardo; Zhang, Yixin; Gabidullin, Bulat; Ovens, Jeffrey; Moilanen, Jani O.; Murugesu, Muralee (Wiley-VCH Verlag, 2021)We report the formation of a tetranuclear lanthanide cluster, [Yb 4 (bpzch) 2 (fod) 10 ] ( 1 ), which occurs from a serendipitous ring opening of the functionalized tetrazine bridging ligand, bpztz (3,6‐dipyrazin‐2‐yl‐1, ... -
Rare-Earth Cyclobutadienyl Sandwich Complexes : Synthesis, Structure and Dynamic Magnetic Properties
Day, Benjamin; Guo, Fu-Sheng; Giblin, Sean; Sekiguchi, Akira; Mansikkamäki, Akseli; Layfield, Richard (Wiley, 2018)The potassium cyclobutadienyl [K2{η4‐C4(SiMe3)4}] (1) reacts with MCl3(THF)3.5 (M=Y, Dy) to give the first rare‐earth cyclobutadienyl complexes, that is, the complex anions [M{η4‐C4(SiMe3)4}{η4‐C4(SiMe3)3‐κ‐(CH2SiMe2}]2−, ... -
Isolation of a Perfectly Linear Uranium(II) Metallocene
Guo, Fu-Sheng; Tsoureas, Nikolaos; Huang, Guo-Zhang; Tong, Ming-Liang; Mansikkamäki, Akseli; Layfield, Richard A. (Wiley-VCH Verlag, 2020)Reduction of the uranium(III) metallocene [(eta(5)-(C5Pr5)-Pr-i)(2)UI] (1) with potassium graphite produces the "second-generation" uranocene [(eta(5)-(C5Pr5)-Pr-i)(2)U] (2), which contains uranium in the formal divalent ...