Näytä suppeat kuvailutiedot

dc.contributor.authorMisitano, Giovanni
dc.date.accessioned2021-02-02T10:12:42Z
dc.date.available2021-02-02T10:12:42Z
dc.date.issued2020
dc.identifier.citationMisitano, G. (2020). Interactively Learning the Preferences of a Decision Maker in Multi-objective Optimization Utilizing Belief-rules. In <i>SSCI 2020 : Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence</i> (pp. 133-140). IEEE. <a href="https://doi.org/10.1109/SSCI47803.2020.9308316" target="_blank">https://doi.org/10.1109/SSCI47803.2020.9308316</a>
dc.identifier.otherCONVID_47387266
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73935
dc.description.abstractMany real life problems can be modelled as multiobjective optimization problems. Such problems often consist of multiple conflicting objectives to be optimized simultaneously. Multiple optimal solutions exist to these problems, and a single solution cannot be said to be the best without preferences given by a domain expert. Preferences can be used to find satisfying solutions: optimal solutions, which best match the expert’s preferences. To model the preferences of the expert, and aid him/her in finding satisfying solutions, a novel method is proposed. The method utilizes machine learning combined with belief-rule based systems to adaptively train a belief rule based system to learn a domain expert’s preferences using preference information gathered during an interactive process. Belief-rule based systems are explainable generalized expert systems, which have not been used before in the manner described in this paper to model preferences of a domain expert for a multi-objective optimization problem. In the case study conducted, the satisfying solutions found using learned preferences are concluded to be compatible with the preferences of the expert, which support the proposed method’s viability as a decision making support tool.en
dc.format.extent3171
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofSSCI 2020 : Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence
dc.rightsIn Copyright
dc.subject.othermultiple objective optimization
dc.subject.otherbelief-rule based systems
dc.subject.othermachine learning
dc.subject.otherPython
dc.subject.otherpreference modelling
dc.subject.otherdecision making
dc.titleInteractively Learning the Preferences of a Decision Maker in Multi-objective Optimization Utilizing Belief-rules
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202102021391
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-7281-2547-3
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange133-140
dc.type.versionacceptedVersion
dc.rights.copyright©2020 IEEE
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceIEEE Symposium Series on Computational Intelligence
dc.relation.grantnumber322221
dc.subject.ysokoneoppiminen
dc.subject.ysooptimointi
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysomallintaminen
dc.subject.ysopäätöksentukijärjestelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p27803
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/SSCI47803.2020.9308316
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright