Show simple item record

dc.contributor.authorDaya Bay collaboration
dc.contributor.authorJUNO collaboration
dc.date.accessioned2021-02-01T11:17:38Z
dc.date.available2021-02-01T11:17:38Z
dc.date.issued2021
dc.identifier.citationDaya Bay collaboration, JUNO collaboration. (2021). Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector. <i>Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment</i>, <i>988</i>, Article 164823. <a href="https://doi.org/10.1016/j.nima.2020.164823" target="_blank">https://doi.org/10.1016/j.nima.2020.164823</a>
dc.identifier.otherCONVID_46983487
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73915
dc.description.abstractTo maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and 0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesNuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherneutrino
dc.subject.otherliquid scintillator
dc.subject.otherlight yield
dc.titleOptimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202102011372
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineYdin- ja kiihdytinfysiikan huippuyksikköfi
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineCentre of Excellence in Nuclear and Accelerator Based Physicsen
dc.contributor.oppiainePhysicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn0168-9002
dc.relation.volume988
dc.type.versionacceptedVersion
dc.rights.copyright© 2021 Elsevier
dc.rights.accesslevelopenAccessfi
dc.subject.ysoneutriinot
dc.subject.ysohiukkasfysiikka
dc.subject.ysoilmaisimet
dc.subject.ysoantimateria
dc.subject.ysotutkimuslaitteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5219
jyx.subject.urihttp://www.yso.fi/onto/yso/p15576
jyx.subject.urihttp://www.yso.fi/onto/yso/p4220
jyx.subject.urihttp://www.yso.fi/onto/yso/p2937
jyx.subject.urihttp://www.yso.fi/onto/yso/p2440
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.nima.2020.164823
jyx.fundinginformationWe are grateful for the ongoing cooperation from the China General Nuclear Power Group and China Light and Power Company. Daya Bay is supported in part by the Ministry of Science and Technology of China, the U.S. Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the MOE in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth, and Sports of the Czech Republic, the Charles University Research Centre UNCE, the Joint Institute of Nuclear Research in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, We acknowledge Yellow River Engineering Consulting Co., Ltd., and China Railway 15th Bureau Group Co., Ltd., for building the underground laboratory. JUNO is supported by the Chinese Academy of Sciences, the National Key R&D Program of China, the CAS Center for Excellence in Particle Physics, the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS, Wuyi University, and the Tsung-Dao Lee Institute of Shanghai Jiao Tong University in China, the Institut National de Physique Nucléaire et de Physique de Particules (IN2P3) in France, the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, the Fond de la Recherche Scientifique (F.R.S-FNRS) and FWO under the “Excellence of Science C EOS in Belgium”, the Conselho Nacional de Desenvolvimento Científico e Tecnològico in Brazil, the Agencia Nacional de Investigación y Desarrollo in Chile, the Charles University Research Centre and the Ministry of Education, Youth, and Sports in Czech Republic, the Deutsche Forschungsgemeinschaft (DFG), the Helmholtz Association, and the Cluster of Excellence PRISMA in Germany, the Joint Institute of Nuclear Research (JINR), Lomonosov Moscow State University, and Russian Foundation for Basic Research (RFBR) in Russia, the MOST and MOE in Taiwan , the Chulalongkorn University and Suranaree University of Technology in Thailand, and the University of California at Irvine in USA .


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0