
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY-NC-ND 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino
detector

© 2021 Elsevier

Accepted version (Final draft)

Daya Bay collaboration; JUNO collaboration

Daya Bay collaboration, JUNO collaboration. (2021). Optimization of the JUNO liquid scintillator
composition using a Daya Bay antineutrino detector. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment,
988, Article 164823. https://doi.org/10.1016/j.nima.2020.164823

2021



Journal Pre-proof

Optimization of the JUNO liquid scintillator composition using a Daya
Bay antineutrino detector

A. Abusleme, T. Adam, S. Ahmad, S. Aiello, M. Akram, N. Ali,
F.P. An, G.P. An, Q. An, G. Andronico, N. Anfimov, V. Antonelli,
T. Antoshkina, B. Asavapibhop, J.P.A.M. de André, A. Babic,
A.B. Balantekin, W. Baldini, M. Baldoncini, H.R. Band, A. Barresi,
E. Baussan, M. Bellato, E. Bernieri, D. Biare, T. Birkenfeld, M. Bishai,
S. Blin, D. Blum, S. Blyth, C. Bordereau, A. Brigatti, R. Brugnera,
A. Budano, P. Burgbacher, M. Buscemi, S. Bussino, J. Busto,
I. Butorov, A. Cabrera, H. Cai, X. Cai, Y.K. Cai, Z.Y. Cai, A. Cammi,
A. Campeny, C.Y. Cao, G.F. Cao, J. Cao, R. Caruso, C. Cerna,
I. Chakaberia, J.F. Chang, Y. Chang, H.S. Chen, P.A. Chen, P.P. Chen,
S.M. Chen, S.J. Chen, X.R. Chen, Y.W. Chen, Y.X. Chen, Y. Chen,
Z. Chen, J. Cheng, Y.P. Cheng, Z.K. Cheng, A. Chepurnov,
J.J. Cherwinka, F. Chiarello, D. Chiesa, P. Chimenti, M.C. Chu,
A. Chukanov, A. Chuvashova, Clementi, B. Clerbaux, S. Conforti Di
Lorenzo, D. Corti, S. Costa, F.D. Corso, J.P. Cummings, O. Dalager,
C. De La Taille, F.S. Deng, J.W. Deng, Z. Deng, Z.Y. Deng,
W. Depnering, M. Diaz, X.F. Ding, Y.Y. Ding, B. Dirgantara,
S. Dmitrievsky, M.V. Diwan, T. Dohnal, G. Donchenko, J.M. Dong,
D. Dornic, E. Doroshkevich, J. Dove, M. Dracos, F. Druillole, S.X. Du,
S. Dusini, M. Dvorak, D.A. Dwyer, T. Enqvist, H. Enzmann, A. Fabbri,
L. Fajt, D.H. Fan, L. Fan, C. Fang, J. Fang, A. Fatkina, D. Fedoseev,
V. Fekete, L.C. Feng, Q.C. Feng, G. Fiorentini, R. Ford, A. Formozov,
A. Fournier, S. Franke, J.P. Gallo, H.N. Gan, F. Gao, A. Garfagnini,
A. Göttel, C. Genster, M. Giammarchi, A. Giaz, N. Giudice,
F. Giuliani, M. Gonchar, G.H. Gong, H. Gong, O. Gorchakov,
Y. Gornushkin, M. Grassi, C. Grewing, M. Gromov, V. Gromov,
M.H. Gu, W.Q. Gu, X.F. Gu, Y. Gu, M.Y. Guan, N. Guardone, M. Gul,
C. Guo, J.Y. Guo, L. Guo, W.L. Guo, X.H. Guo, Y.H. Guo, Z. Guo,
M. Haacke, R.W. Hackenburg, P. Hackspacher, C. Hagner, R. Han,
Y. Han, S. Hans, M. He, W. He, K.M. Heeger, T. Heinz, Y.K. Heng,
R. Herrera, A. Higuera, D.J. Hong, Y.K. Hor, S.J. Hou, Y.B. Hsiung,
B.Z. Hu, H. Hu, J.R. Hu, J. Hu, S.Y. Hu, T. Hu, Z.J. Hu, C.H. Huang,
G.H. Huang, H.X. Huang, Q.H. Huang, W.H. Huang, X.T. Huang,
Y.B. Huang, P. Huber, J.Q. Hui, L. Huo, W.J. Huo, C. Huss, S. Hussain,
A. Insolia, A. Ioannisian, D. Ioannisyan, R. Isocrate, D.E. Jaffe,
K.L. Jen, X.L. Ji, X.P. Ji, X.Z. Ji, H.H. Jia, J.J. Jia, S.Y. Jian, D. Jiang,
X.S. Jiang, R.Y. Jin, X.P. Jing, R.A. Johnson, C. Jollet, D. Jones,
J. Joutsenvaara, S. Jungthawan, L. Kalousis, P. Kampmann, L. Kang,
M. Karagounis, N. Kazarian, S.H. Kettell, A. Khan, W. Khan,
K. Khosonthongkee, P. Kinz, S. Kohn, D. Korablev, K. Kouzakov,
M. Kramer, A. Krasnoperov, S. Krokhaleva, Z. Krumshteyn, A. Kruth,
N. Kutovskiy, P. Kuusiniemi, B. Lachacinski, T. Lachenmaier,
C. Landini, T.J. Langford, J. Lee, J.H.C. Lee, F. Lefevre, L. Lei, R. Lei,



R. Leitner, J. Leung, C. Li, D.M. Li, F. Li, F. Li, H.T. Li, H.L. Li, J. Li,
J.J. Li, J.Q. Li, K.J. Li, M.Z. Li, N. Li, N. Li, Q.J. Li, Q.J. Li, R.H. Li,
S.C. Li, S.F. Li, S.J. Li, T. Li, T. Li, W.D. Li, W.G. Li, X.M. Li,
X.N. Li, X.L. Li, X.Q. Li, Y. Li, Y.F. Li, Z.B. Li, Z.Y. Li, H. Liang,
H. Liang, J.J. Liang, D. Liebau, A. Limphirat, S. Limpijumnong,
C.J. Lin, G.L. Lin, S.X. Lin, T. Lin, Y.H. Lin, J.J. Ling, J.M. Link,
I. Lippi, L. Littenberg, B.R. Littlejohn, F. Liu, H. Liu, H. Liu, H.B. Liu,
H.D. Liu, H.J. Liu, H.T. Liu, J.C. Liu, J.L. Liu, M. Liu, Q. Liu, Q. Liu,
R.X. Liu, S.Y. Liu, S.B. Liu, S.L. Liu, X.W. Liu, Y. Liu, A. Lokhov,
P. Lombardi, K. Loo, S. Lorenz, C. Lu, C. Lu, H.Q. Lu, J.B. Lu,
J.G. Lu, S.X. Lu, X.X. Lu, B. Lubsandorzhiev, S. Lubsandorzhiev,
L. Ludhova, K.B. Luk, F.J. Luo, G. Luo, P.W. Luo, S. Luo, W.M. Luo,
V. Lyashuk, Q.M. Ma, S. Ma, X.B. Ma, X.Y. Ma, Y.Q. Ma,
Y. Malyshkin, F. Mantovani, Y.J. Mao, S.M. Mari, F. Marini,
S. Marium, C. Marshall, C. Martellini, G. Martin-Chassard, D.A.
Martinez Caicedo, A. Martini, J. Martino, D. Mayilyan,
K.T. McDonald, R.D. McKeown, A. Müller, G. Meng, Y. Meng,
A. Meregaglia, E. Meroni, D. Meyhöfer, M. Mezzetto, J. Miller,
L. Miramonti, S. Monforte, P. Montini, M. Montuschi, N. Morozov,
P. Muralidharan, J. Napolitano, M. Nastasi, D.V. Naumov,
E. Naumova, I. Nemchenok, A. Nikolaev, F.P. Ning, Z. Ning,
H. Nunokawa, L. Oberauer, J.P. Ochoa-Ricoux, A. Olshevskiy,
F. Ortica, H.R. Pan, A. Paoloni, J. Park, N. Parkalian, S. Parmeggiano,
S. Patton, T. Payupol, V. Pec, D. Pedretti, Y.T. Pei, N. Pelliccia,
A.G. Peng, H.P. Peng, J.C. Peng, F. Perrot, P.A. Petitjean, L.F.
Pineres Rico, A. Popov, P. Poussot, W. Pratumwan, E. Previtali,
C.S.J. Pun, F.Z. Qi, M. Qi, S. Qian, X. Qian, X.H. Qian, H. Qiao,
Z.H. Qin, S.K. Qiu, M. Rajput, G. Ranucci, N. Raper, A. Re,
H. Rebber, A. Rebii, B. Ren, J. Ren, C.M. Reveco, T. Rezinko,
B. Ricci, M. Robens, M. Roche, N. Rodphai, L. Rohwer, A. Romani,
R. Rosero, B. Roskovec, C. Roth, X.C. Ruan, X.D. Ruan, S. Rujirawat,
A. Rybnikov, A. Sadovsky, P. Saggese, G. Salamanna, A. Sangka,
N. Sanguansak, U. Sawangwit, J. Sawatzki, F. Sawy, M. Schever,
J. Schuler, C. Schwab, K. Schweizer, D. Selivanov, A. Selyunin,
A. Serafini, G. Settanta, M. Settimo, M. Shahzad, G. Shi, J.Y. Shi,
Y.J. Shi, V. Shutov, A. Sidorenkov, F. Simkovic, C. Sirignano,
J. Siripak, M. Sisti, M. Slupecki, M. Smirnov, O. Smirnov,
T. Sogo-Bezerra, J. Songwadhana, B. Soonthornthum, A. Sotnikov,
O. Sramek, W. Sreethawong, A. Stahl, L. Stanco, K. Stankevich,
D. Stefanik, H. Steiger, H. Steiner, J. Steinmann, M. Stender, V. Strati,
A. Studenikin, G.X. Sun, L.T. Sun, J.L. Sun, S.F. Sun, X.L. Sun,
Y.J. Sun, Y.Z. Sun, N. Suwonjandee, M. Szelezniak, J. Tang, Q. Tang,
Q. Tang, X. Tang, A. Tietzsch, I. Tkachev, T. Tmej, K. Treskov,
G. Troni, W. Trzaska, W.-H. Tse, C.E. Tull, C. Tuve, S. van Waasen, J.
Vanden Boom, N. Vassilopoulos, V. Vedin, G. Verde, M. Vialkov,
B. Viaud, B. Viren, C. Volpe, V. Vorobel, L. Votano, P. Walker,
C. Wang, C.H. Wang, E. Wang, G.L. Wang, J. Wang, J. Wang,
K.Y. Wang, L. Wang, M.F. Wang, M. Wang, M. Wang, N.Y. Wang,
R.G. Wang, S.G. Wang, W. Wang, W. Wang, W.S. Wang, X. Wang,
X.Y. Wang, Y. Wang, Y. Wang, Y. Wang, Y.F. Wang, Y.G. Wang,



Y.M. Wang, Y.Q. Wang, Z. Wang, Z. Wang, Z.M. Wang, Z.Y. Wang,
A. Watcharangkool, H.Y. Wei, L.H. Wei, W. Wei, Y.D. Wei, L.J. Wen,
K. Whisnant, C.G. White, C. Wiebusch, S.C.F. Wong, H.L.H. Wong,
B. Wonsak, E. Worcester, C.H. Wu, D.R. Wu, F.L. Wu, Q. Wu,
W.J. Wu, Z. Wu, M. Wurm, J. Wurtz, C. Wysotzki, Y.F. Xi, D.M. Xia,
Y.G. Xie, Z.Q. Xie, Z.Z. Xing, D.L. Xu, F.R. Xu, H.K. Xu, J.L. Xu,
J. Xu, M.H. Xu, T. Xu, Y. Xu, Y. Xu, T. Xue, B.J. Yan, X.B. Yan,
Y.P. Yan, A.B. Yang, C.G. Yang, H. Yang, J. Yang, L. Yang, X.Y. Yang,
Y.F. Yang, Y.Z. Yang, H.F. Yao, Z. Yasin, J.X. Ye, M. Ye, U. Yegin,
M. Yeh, F. Yermia, P.H. Yi, Z.Y. You, B.L. Young, B.X. Yu, C.X. Yu,
C.Y. Yu, H.Z. Yu, M. Yu, X.H. Yu, Z.Y. Yu, C.Z. Yuan, Y. Yuan,
Z.X. Yuan, Z.Y. Yuan, B.B. Yue, N. Zafar, A. Zambanini, P. Zeng,
S. Zeng, T.X. Zeng, Y.D. Zeng, L. Zhan, C. Zhang, F.Y. Zhang,
G.Q. Zhang, H.H. Zhang, H.Q. Zhang, J. Zhang, J.B. Zhang,
J.W. Zhang, P. Zhang, Q.M. Zhang, T. Zhang, X.M. Zhang,
X.T. Zhang, Y. Zhang, Y.H. Zhang, Y.M. Zhang, Y.P. Zhang,
Y.X. Zhang, Y.Y. Zhang, Y.Y. Zhang, Z.J. Zhang, Z.P. Zhang,
Z.Y. Zhang, Z.Y. Zhang, F.Y. Zhao, J. Zhao, R. Zhao, S.J. Zhao,
T.C. Zhao, D.Q. Zheng, H. Zheng, M.S. Zheng, Y.H. Zheng,
W.R. Zhong, J. Zhou, L. Zhou, N. Zhou, S. Zhou, X. Zhou, J. Zhu,
K.J. Zhu, H.L. Zhuang, L. Zong, J.H. Zou

PII: S0168-9002(20)31220-1
DOI: https://doi.org/10.1016/j.nima.2020.164823
Reference: NIMA 164823

To appear in: Nuclear Inst. and Methods in Physics Research, A

Received date : 24 July 2020
Revised date : 13 October 2020
Accepted date : 27 October 2020

Please cite this article as: A. Abusleme, T. Adam, S. Ahmad et al., Optimization of the JUNO
liquid scintillator composition using a Daya Bay antineutrino detector, Nuclear Inst. and Methods
in Physics Research, A (2020), doi: https://doi.org/10.1016/j.nima.2020.164823.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.nima.2020.164823
https://doi.org/10.1016/j.nima.2020.164823


O ay

Abst

To m servato-
ry (JU various
comp trations
of th mg/L to
4 g/L purified
solve de in the
detec a newly
deve enabled
to de 4 mg/L
bis-M

Keyw

Prepr

Journal Pre-proof
ptimization of the JUNO liquid scintillator composition using a Daya B
antineutrino detector

ract

aximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Ob
NO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in

ositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concen
e fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01
and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically

nt, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitu
tor size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of

loped optical model. Then, the model and tuned parameters were used in the JUNO simulation. This
termine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to
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Liquid scintillator (LS) detectors readout by photomultiplier tubes (PMTs) have supported neutrino
everal decades, from the discovery of neutrinos in the 1950s [1], to the precise measurement of the

squared splitting ∆m2
21 at KamLAND [2], the precise measurement of solar neutrinos at Borex

the observation of the θ13-driven neutrino oscillation at Daya Bay [4]. Given the high light yiel
parency and relatively low price, this kind of detector is also adopted by the Jiangmen Underground N
rvatory (JUNO) [5, 6], which utilizes 20 kt LS with one of the physics goals of determining the neutri
ing. Since the sensitivity comes from a precise measurement of the fine structure in the oscillated
rum, a crucial requirement on the JUNO detector is the excellent energy resolution, ∼3% at 1 MeV, corres
least 1100 detected photoelectrons (p.e.) per MeV of deposited energy [5]. The number of detected p.e. p
erred to as ObsLY hereafter. The higher ObsLY is, the better the energy resolution and the physics sensiti
, one of the keys of the JUNO detector development is to maximize ObsLY.
In recent LS experiments, a widely used solvent is linear alkylbenzene (LAB), with 2,5-diphenyloxazole (
uor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as the wavelength shifter. The ionization of a charged
es the LAB molecules. A fraction of the excitation energy is transferred to the PPO. Scintillation pho
rated from the de-excitation of PPO molecules. The total number of photons released by PPO is define
l light yield, which rapidly increases with the PPO concentration before reaching 2 g/L. Above this conce
crease becomes much less steep. The wavelengths of most initial photons are shifted to longer wavele

bsorption and re-emission of bis-MSB. This shift is crucial as the long wavelength avoids spectral self-ab
e solvent and allows the photons to reach PMTs far away from the energy deposit points. Eventually, O
t effect of the initial light yield, the photon absorption and re-emission during propagation, and the wav

ndent PMT quantum efficiency (QE). To obtain the maximum ObsLY, these aspects must be simulta
ized.

There have been many studies that independently measured the optical properties of LS, such as Refs.
e initial light yields, Refs. [10, 11, 12] for the transparency. To completely deal with the competing

rption and subsequent re-emission processes of the LS components, a comprehensive optical model was de
eported in Ref. [13]. However, the parameters used in the model were obtained from bench-top experime
ical detector size of a few centimeters. Before usage in JUNO, a spherical LS detector with an inner dia
m, the model and its parameters should be validated based on data collected in a larger detector.
This requirement motivated a dedicated LS experiment at Daya Bay. A LS pilot plant was built by th
boration in the underground LS hall of Daya Bay. One Daya Bay antineutrino detector (AD) [14, 15
rimental Hall 1 (EH1-AD1) stopped data taking in January 2017. The 20 t gadolinium-loaded LS (G
nermost cylindrical vessel with 3 m in diameter and height was replaced with purified LS produced by

. PPO and bis-MSB concentrations were 0.5 g/L and less than 0.01 mg/L, and then increased in 12 steps
3 mg/L, respectively. The ObsLY in the 13 samples was measured at 0.5% precision level. The above-m
al model was successfully tuned to the data. This allowed to identify the optimal scintillator compositio
JUNO detector.
The structure of this paper is as follows: Sec. 2 describes the Daya Bay AD and the LS replacement exp
on 3 presents results of the ObsLY measurements. Section 4 discusses the determination of the JU
osition using the optical model tuned to Daya Bay data.

he JUNO LS pilot experiment at Daya Bay

The Daya Bay reactor neutrino experiment started data taking on December 24, 2011. With mil
teractions detected in eight identically designed ADs in three underground EHs, many physics results ha
uced, including the current world-leading measurements of the neutrino mixing angle θ13 and the square
ing |∆m2

32| [16], precise measurements of the reactor νe flux and spectrum [17, 18, 19], and stringent limi
ence of light sterile neutrinos [20, 21]. Three nested cylindrical volumes in each AD are separated by co
ic vessels (IAV, OAV), as shown in Fig. 1. The innermost volume is filled with 20 t of Gd-LS, servin
ary νe target. It is surrounded by ∼22 t of non-loaded LS to detect γ-rays escaping from the target
outermost volume is filled with mineral oil to shield the LS from natural radioactivity. A total of 19
s (Hamamatsu R-5912) are installed on the steel vessel to detect scintillation photons. There are three Au
ration Units (ACUs) on the top of each AD to calibrate the energy response along the vertical axes at the
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r (ACU-A), the edge of the Gd-LS volume (ACU-B, removed for the replacement experiment), and
e (ACU-C). Details of the detector systems are reported in Refs. [14, 15, 22].

1: Schematic of a Daya Bay antineutrino detector. The three cylindrical volumes, defined by two acrylic vessels, are filled w
d mineral oil from the innermost to the outermost. Three Automated Calibration Units are installed on top of the detector to ca

or’s energy response. Two interfaces are installed on the top of EH1-AD1 for the LS replacement experiment, one through the centra
nd the other one using the port of ACU-B.

Figure 2 shows photographs of the LS experiment, including the pilot plant, the LS replacement sys
-AD1. The pilot plant built in the LS hall consisted of four primary subsystems for purification in seque
3 column, the distillation, the water extraction and the steam stripping. In addition there were several su
stems for the PPO and bis-MSB dissolution, and the generation of purified water and nitrogen. To co

al qualities, an apparatus with a 1-m long tube was built to measure the light attenuation in the liqui
LAB produced by the Jinling LAB factory was purified by the Al2O3 column for optical transparency
lated for radiopurity. About 11.6 kg PPO produced by the Haiso Technology Co., LTD was dissolved an
LAB. Thus, the initial LS composition was 0.5 g/L PPO without bis-MSB. Before filling AD1, the mixt

gh the water extraction and steam stripping systems for radiopurity. Details of the distillation and steam s
ms have been reported in Ref. [23]. The attenuation length of the purified LAB was measured to be 2
hoton wavelength of 430 nm, and the attenuation length of the initial LS was 23.8 m. The uncertainties
s were about 2 m, primarily from the relatively short light path compared to the attenuation length.
A replacement system was set up in EH1 to drain the Gd-LS and refill the IAV with new LS. The system c
ree pumps, three buffer tanks and stainless steel pipes connecting to the two interfaces on AD1. The
face A for injecting liquids was installed via the central overflow tank while the draining was performe
ic tube inserted to the bottom of IAV through the interface B. The ACU-B was removed for installing the i
fact, the liquids could be filled or drained from either interfaces. The system could run in a self-circu

l-circulation mode. In the former mode, liquids were pumped from the IAV to a 300 L buffer tank a
serted into the IAV. In the latter mode, liquids in the IAV were drained and sent to the facilities in the LS
er processing, while newly produced liquids or the re-processed ones were returned to the IAV.
To avoid mixing of the old Gd-LS and the new LS, the Gd-LS was replaced first by purified water that w
ced by the new LS. This replacement method was also required to prevent destructive stress on the acrylic
February 16 to February 22 2017, the Gd-LS was drained at a rate of about 300 L/h through the central i
purified water was filled through the side interface. Then, the new LS with 0.5 g/L PPO was filled thro

al interface while water was drained through the side one. Limited by the position of the central inte
t 10 L Gd-LS could not be drained out. This resulted in a residual bis-MSB concentration of less than 0.0
rmed by the light absorption measurement with a UV-vis spectrometer. In addition, since the tube thro
face B could not touch the IAV bottom, a layer of water with a thickness of about 1 cm was left. Eventu
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Figure 2: Photographs of EH1-AD1, the replacement system in EH1, and the pilot plant in the LS hall (Hall 5).

Step PPO bis-MSB Date of calibration LS temperature ObsLY (p.e./MeV)
Initial 0.5 g/L <0.01 mg/L April 28, 2017 22.6 oC 123.7

1 1.0 g/L <0.01 mg/L May 28, 2017 22.6 oC 150.3
2 2.0 g/L <0.01 mg/L June 4, 2017 22.5 oC 167.7
3 2.0 g/L 0.1 mg/L June 9, 2017 22.6 oC 177.2
4 2.0 g/L 1.0 mg/L June 13, 2017 22.6 oC 183.2
5 2.0 g/L 4.0 mg/L June 18, 2017 22.6 oC 184.3
6 2.0 g/L 7.0 mg/L June 23, 2017 22.6 oC 184.8
7 2.5 g/L 7.0 mg/L June 29, 2017 22.6 oC 189.5
8 3.0 g/L 7.0 mg/L July 5, 2017 22.6 oC 191.6
9 3.5 g/L 7.0 mg/L July 11, 2017 22.6 oC 192.6

10 4.0 g/L 7.0 mg/L July 17, 2017 22.7 oC 192.6
11 4.0 g/L 10.0 mg/L July 22, 2017 22.7 oC 193.0
12 4.0 g/L 13.0 mg/L July 27, 2017 22.7 oC 193.3

1: Summary of the LS experiment. Each LS composition change took 4 to 5 days, including a slow addition of PPO or bis-MS
ollowed by at least 3 days of self-circulation. The ObsLY was measured to a precision of 0.5% using a 60Co calibration source in th
.

cement was successfully finished on March 7. To obtain the radiopurity of LS with 0.5 g/L PPO, the repl
m was shut down after ten days of self-circulation. The LS radiopurity was measured later in May to wa
y of the 222Rn contamination.
Beginning on May 20, PPO and bis-MSB were added in 12 steps as summarized in Table 1. In each
cement system was working in the full-circulation mode. The LS was pumped out with a 300 L/h speed
uffer tank of the water extraction system in the LS hall. The PPO or bis-MSB was dissolved and slowly
uffer tank in 36 hours. During this time about half of the total LS volume was circulated. Then, the repl
m ran in the self-circulation mode with a 300 L/h rate for about three days to obtain the uniform fluor dis
e IAV. The fluor concentration was measured every 12 hours with a UV-vis spectrometer. In general, a
of self-circulation the concentration was stabilized at the target value. In the following the detector respo
rated by deploying 60Co calibration sources along ACU-A and ACU-C. The proceduce generally took a
s. ObsLY was determined using the data collected with the 60Co source deployed in the detector center.

he light yield measurements

The scintillation photons are detected by the 192 PMTs of the AD, operating at an average gain of 1×107

s were working without problems over the three-months period. In the Daya Bay readout system, after a
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mplification, the PMT signal is fed to a pulse shaping circuit consisting of a differential CR and four int
ircuits (CR-(RC)4), and then amplified by a factor of ten. The integrated value, sampled by a 40-MH
, is used as an estimate of the PMT charge output [24]. The PMT gains were separately calibrated in the
urements, using the PMT dark noises captured by the data acquisition system. The CR-(RC)4 shaping
ined with the time distribution of detected light, introduces a ∼10% nonlinearity in the charge meas
single channel, dubbed the electronics nonlinearity. From the initial concentration to the 6th step in
lectronics nonlinearity was carefully measured and corrected with the help of a full Flash ADC readou

wing the method reported in Ref. [25]. From the 7th to 12th steps, the Flash ADC readout system was not
Therefore, the measured nonlinearity in the 6th step was used to correct nonlinearities in the 7th to 12
corrections were feasible because the time distributions of detected light were found to be stable in the 6
.
For each concentration, ObsLY was determined by measuring the scintillation light originating from
s of 60Co decays, corresponding to a total deposit energy of 2.505 MeV. Figure 3 and Table 1 summa
ured light yields with the 13 LS compositions. For the first three steps with less than 0.01 mg/L bis-M
ual Gd-LS, the light yield increased by more than 40% with PPO concentrations increasing from 0.5 g/L
ng 1 mg/L bis-MSB further increased the light yield by 10%. However, no significant increase was fou
er raising the bis-MSB concentration. This indicates that for the very transparent LAB, scintillation light
PO would either be absorbed and re-emitted by bis-MSB, or directly reach the PMTs. Adding more b
only shift the fractions of photons from PPO and bis-MSB when reaching the PMTs. In addition, afte
SB, the increase of PPO to more than 2.5 g/L yielded no obvious effect on ObsLY, suggesting the ini
had reached the plateau for particles with low energy deposit density, such as γ’s and e±’s.
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3: Measured light yields ObsLY versus PPO and bis-MSB concentrations. The labels of the horizontal axis are the concen
g/L) plus that of bis-MSB (mg/L). The vertical error bar (0.2%) is statistical only and too small to be visible. The points in each c
asured at the same PPO or bis-MSB concentration.

To compare ObsLY of different LS compositions, we have considered the relative uncertainties mainly
three sources: the LS temperature variation, the statistical fluctuations in the determination of PMT gain

0Co peak, and the electronics nonlinearity correction. The LS temperature was monitored using four sen
found to be stable within 0.2 oC over the three months, resulting in a less than 0.1% light yield variatio
e measurements in Ref. [26]. The second term is estimated to be at 0.2% level according to the fitted
position of the 60Co source. The third term is less than 0.5% for each measurement as discussed in R

bining the three sources, the uncertainty of each light yield measurement is estimated to be 0.5%.
From August 2017 to January 2019, several rounds of radiopurity studies have been carried out. In thi
S composition was kept at 4 g/L PPO and 13 mg/L bis-MSB. A stable ObsLY was found within ±0.5% a
g. 4.
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ptimization of the JUNO LS composition

The ObsLY measurements performed at Daya Bay are of great importance to future LS experiments,
O, for the determination of the LS composition. However, ObsLY of Daya Bay cannot be directly used in

ObsLY is affected by a few factors, such as the initial light yield, the self-absorption and re-emissio
g propagation, and the PMT QE spectra. The 20 kt LS of JUNO are contained in a spherical acryli
an inner diameter of 35.4 m. Scintillation light is detected by about 18,000 20-inch PMTs, includin
amatsu R-12860 dynode PMTs, and 13,000 NNVT GDG-6201 PMTs with a microchannel plate (MC
ad of a dynode structure. In Daya Bay the new LS was studied in a cylindrical vessel with 3 m in he
eter, and Hamamatsu R-5912 8-inch PMTs were used.
To take these differences into account, a newly developed optical model [13] has been implemente
lation of both experiments. The model is designed to thoroughly deal with the competing photon ab
ubsequent re-emission processes of the LS components. It starts with primary scintillation photons em

. During the propagation, a photon could either be absorbed, or be scattered, or vanish when reaching
daries such as PMTs. The absorption could happen on any LS component, according to the Beer-Lam
he absorption spectrum of each component. A new photon with longer wavelength may be emitted if the
n is absorbed by PPO or bis-MSB. The re-emission probability is defined as the fluorescence quantum effi

is model, scattering of optical photons happens via the Rayleigh process. Once a photon is scattered, it
tion and continues propagation. The Rayleigh scattering length of LAB is found to be 27.0±2.3 m at 430
, key optical parameters in the model consist of emission spectra of PPO and bis-MSB, absorption spectra
and bis-MSB, and wavelength-dependent fluorescence quantum efficiencies of PPO and bis-MSB.
The measurements of the key optical parameters are described below and in Ref. [13]. The emission
O and bis-MSB were well measured with a Fluorolog Tau-3 spectrometer as shown in Fig. 5. The ab
rum of each LS component used in Daya Bay and the pilot plant was measured using a Shimadzu UV2
pectrometer and quartz cuvettes with different light paths up to 10 cm. To overcome the large uncerta

ited cuvette sizes and the long absorption length at photon wavelength of 430 nm, a 1-m long tube w
easure the attenuation length. Then, the absorption length were obtained by subtracting the Rayleigh sc
h from the attenuation one. Comparison of absorption spectra among the Daya Bay original liquids
ed JUNO liquids is shown in Fig. 6. The purification significantly improved the transparencies of L

. The general method to measure fluorescence QE was using the combination of a fluorescence spec
UV-Vis spectrometer. An average QE spectrum from several measurements [10, 11, 12] was adopte

lation, shown as the default QE spectra in Fig. 5. Due to intrinsic difficulties of several corrections in this

Jo
ur

na
l P

re
-p

ro
of
6



the m159

Figure average of
three b

Figure gnificantly
impro

al 1-cm160

wate ater and161

the L t yields162

with sorption163

spect t re-emit164

a new . More165

bis-M ch more166

trans spectra167

of JU emitted168

Journal Pre-proof
easured efficiencies had relatively large uncertainties, typically 5%.
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5: Emission spectra of PPO and bis-MSB in arbitrary units, and their QE efficiencies. The default PPO QE spectra are from the
ench-top measurements, while the tuned ones are from the tuning based on Daya Bay data taken in LS experiment in Table 1.
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6: Comparison of the absorption spectra of LAB and PPO used in Daya Bay and produced by JUNO pilot plant. The purification si
ved the optical transparency.

The optical model has been implemented in the Geant4 [28] based Daya Bay simulation. The residu
r at the bottom of IAV has been included in the simulation by assuming a perfect surface between the w
S. The bis-MSB of less than 0.01 mg/L from the residual Gd-LS is also included. The simulated ligh
respect to bis-MSB concentrations are compared with the experimental data, as shown in Fig. 7. If the ab
ra of Daya Bay liquids are used, a much steeper ObsLY increase is found, because LAB, which does no

photon after the absorption, strongly competes with bis-MSB in the wavelength range of 350 to 400 nm
SB leads to more photons shifting to the wavelength range above 420 nm, in which the liquids are mu

parent. Thus, the ObsLY monotonically increases with the bis-MSB concentration. Once the absorption
NO liquids are employed, the importance of bis-MSB is significantly reduced, and most of the photons
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PO could reach the Daya Bay LS contained in the outer acrylic vessel before absorption by LAB. How
SB concentrations of smaller than 1 mg/L, the bis-MSB plays a less important role in the data compare

lation. Varying the absorption spectra of each component at wavelengths longer than 420 nm does no
iscrepancy. Changing the height of the bis-MSB QE spectrum, and shifting the cutoff position of the P
SB QE spectra have minor impacts on the discrepancy. Eventually, the PPO fluorescence QE is incre

s shown in Fig. 5. Once a photon is absorbed by PPO, the probability of re-emitting a new photon wit
length is closer to 1. In this way, the discrepancy between simulation and data is improved from abou
r than 1%.
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MC with JUNO LS abs.
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 + tuned fluor. QE

7: Comparison of the measured and simulated light yields with 2 g/L PPO and various bis-MSB concentrations. Each group is n
g/L bis-MSB. The JUNO LS data in the Daya Bay detector are drawn as the black dots. If the optical properties of Daya Bay L
simulation, large discrepancies are found as the black squares. Using the default optical properties of JUNO LS in Fig. 5 and
tion results (blue inverted triangles) have a much better agreement with data. After increasing the PPO fluorescence quantum effici
ent is improved from 2% to 1% (red triangles) at low bis-MSB concentrations. For better visibility, the triangles and inverted tr

y shifted to the right and the left, respectively.

The first application of the tuned model is to extract the initial light yields with different PPO concen
entioned before, ObsLY is a joint effect of the initial light yield, the absorption and re-emission,
response. A set of simulation is performed for the Daya Bay AD with LS compositions with differ

entrations and 7 mg/L bis-MSB. The same initial light yield is used in the simulation to solely study
rption effect of PPO. The simulation results are listed in Table 2. Each 0.5 g/L PPO increase leads

loss of ObsLY in the simulation. Thus, the initial light yields are obtained by dividing the Daya Bay m
Y with the simulated ones, and will be used in the determination of the JUNO LS composition.

PPO concentration
ObsLY

Initial light yield
Measured Simulated

2.0 g/L 1 1 1
2.5 g/L 1.025 0.994 1.031
3.0 g/L 1.037 0.991 1.046
3.5 g/L 1.042 0.986 1.057
4.0 g/L 1.042 0.982 1.061

2: Relative ObsLY with respect to PPO concentrations in the data and the simulation, normalized at 2 g/L PPO. In the simulation
ield is fixed to solely study the PPO self-absorption effects. The initial light yields are extracted by dividing the measured value
ted ones.

The optical model, the measured absorption spectra, the tuned fluorescence quantum efficiencies,
cted initial light yields have been employed in the JUNO simulation. The simulated ObsLY with respec
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is-MSB concentrations is shown in Fig. 8. The normalization point is chosen as 2.5 g/L PPO and 2 m
, at which the largest light yield is found. Although the ObsLY monotonically increases with PPO concen
ya Bay, 2.5 g/L PPO is preferred at JUNO due to the non-negligible self-absorption in the larger detec
al bis-MSB concentration could be in the range of 1 mg/L to 4 mg/L, since the ObsLY difference is less

s range. Combining the absorption of each component, and the scattering of LAB, the LS attenuation len
omposition is about 20.4 m at 430 nm. It fulfills the requirement in the JUNO Conceptual Design Repor
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8: The simulated ObsLY with respect to PPO and bis-MSB concentrations in the JUNO detector. The tuned optical paramete
light yields in Table 2 are used in the simulation. For better visibility, the bis-MSB concentrations are divided to two groups which
top and bottom panel, respectively.

mmary

A precise measurement of ObsLY in various LS compositions has been performed in a Daya Bay AD, by r
d-LS with purified LS produced in a pilot plant in the underground LS hall. For γ’s and e±’s, ObsLY r

au for PPO concentrations larger than 2.5 g/L. In addition, if the solvent is optically purified, the ObsLY
respect to bis-MSB concentrations is negligible for concentrations larger than 4 mg/L. A novel optical m
employed to describe the complicated optical process in the liquids. The predicted ObsLY in different b

entrations agrees with these measurements within 1%. The initial light yields in various PPO concen
xtracted by subtracting the PPO self-absorption effect predicted by the optical model. To find the opt
osition of JUNO, the model and the tuned optical parameters are used in the JUNO simulation. Th

est that in the JUNO-scale detector, either a PPO concentration larger than 2.5 g/L, or a bis-MSB conce
r than 4 mg/L, would reduce the ObsLY. The JUNO LS composition is optimized to be the purified L
/L PPO and (1-4) mg/L bis-MSB. The optimization method can also be used in other future LS experime
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42 Université Libre de Bruxelles, Brussels, Belgium

43 Siena College, Loudonville, New York 12211, USA
44 Department of Physics and Astronomy, University of California, Irvine, California, USA

45 Institute of Physics, Johannes-Gutenberg Universität Mainz, Mainz, Germany
46 Suranaree University of Technology, Nakhon Ratchasima, Thailand

47 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
48 Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

49 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
50 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China

51 Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
52 University of Jyvaskyla, Department of Physics, Jyvaskyla, Finland

53 Wuyi University, Jiangmen, China
54 Guangxi University, Nanning, China

55 Harbin Institute of Technology, Harbin, China
56 Technische Universität München, München, Germany

57 Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
58 Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China

59 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
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