dc.contributor.author | Espinoza, Catalina | |
dc.contributor.author | Lämsä, Joni | |
dc.contributor.author | Araya, Roberto | |
dc.contributor.author | Hämäläinen, Raija | |
dc.contributor.author | Jimenez, Abelino | |
dc.contributor.author | Gormaz, Raul | |
dc.contributor.author | Viiri, Jouni | |
dc.contributor.editor | Levrini, Olivia | |
dc.contributor.editor | Tasquier, Giulia | |
dc.date.accessioned | 2021-02-01T10:54:35Z | |
dc.date.available | 2021-02-01T10:54:35Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Espinoza, C., Lämsä, J., Araya, R., Hämäläinen, R., Jimenez, A., Gormaz, R., & Viiri, J. (2019). Automatic content analysis in collaborative inquiry-based learning. In O. Levrini, & G. Tasquier (Eds.), <i>Proceedings of ESERA 2019 : The Beauty and Pleasure of Understanding : Engaging with Contemporary Challenges Through Science Education</i> (pp. 2041-2050). University of Bologna. <a href="https://www.esera.org/publications/esera-conference-proceedings/esera-2019" target="_blank">https://www.esera.org/publications/esera-conference-proceedings/esera-2019</a> | |
dc.identifier.other | CONVID_47767719 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/73911 | |
dc.description.abstract | In the field of science education, content analysis is a popular way to analyse collaborative inquiry-based learning (CIBL) processes. However, content analysis is time-consuming when conducted by humans. In this paper, we introduce an automatic content analysis method to identify the different inquiry-based learning (IBL) phases from authentic student face-to-face discussions. We illustrate the potential of automatic content analysis by comparing the results of manual content analysis (conducted by humans) and automatic content analysis (conducted by computers). Both the manual and automatic content analyses were based on manual transcriptions of 11 groups’ CIBL processes. Two researchers performed the manual content analysis, in which each utterance of the groups’ discussions was coded to an IBL phase. First, an algorithm was trained with some of the manually coded utterances to prepare the automatic content analysis. Second, the researchers tested the ability of the algorithm to automatically code the utterances that were not used in the training. The algorithm was a linear support vector machine (SVM) classifier. Since the input of the SVM must be a numerical vector of constant size, we used a topic model to build a feature vector representation for each utterance. The correspondence of the manual and automatic content analyses was 52.9%. The precision of the classifier varied from 49% to 68%, depending on the IBL phase. We discuss issues to consider in the future when improving automatic content analysis methods. We also highlight the potential benefits of automatic content analysis from the viewpoint of science teachers and science education researchers | en |
dc.format.extent | 2056 | |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | University of Bologna | |
dc.relation.ispartof | Proceedings of ESERA 2019 : The Beauty and Pleasure of Understanding : Engaging with Contemporary Challenges Through Science Education | |
dc.relation.uri | https://www.esera.org/publications/esera-conference-proceedings/esera-2019 | |
dc.rights | In Copyright | |
dc.subject.other | Inquiry-oriented learning | |
dc.subject.other | Quantitative methods | |
dc.title | Automatic content analysis in collaborative inquiry-based learning | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202102011368 | |
dc.contributor.laitos | Kasvatustieteiden laitos | fi |
dc.contributor.laitos | Opettajankoulutuslaitos | fi |
dc.contributor.laitos | Department of Education | en |
dc.contributor.laitos | Department of Teacher Education | en |
dc.contributor.oppiaine | Matematiikka ja luonnontieteet | fi |
dc.contributor.oppiaine | Kasvatustiede | fi |
dc.contributor.oppiaine | Matematiikka ja luonnontieteet | en |
dc.contributor.oppiaine | Education | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-88-945874-0-1 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 2041-2050 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2019 ESERA and the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | European Science Education Research Association Conference | |
dc.relation.grantnumber | 292466 | |
dc.subject.yso | tutkiva oppiminen | |
dc.subject.yso | oppimisprosessi | |
dc.subject.yso | tekstinlouhinta | |
dc.subject.yso | yhteisöllinen oppiminen | |
dc.subject.yso | keskustelunanalyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18173 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5103 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27112 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18727 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7828 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundinginformation | Suomen Akatemia 292466 ja 318095 (the Multidisciplinary Research on Learning and Teaching profiles I and II of JYU) | |
dc.type.okm | A4 | |