Show simple item record

dc.contributor.authorEspinoza, Catalina
dc.contributor.authorLämsä, Joni
dc.contributor.authorAraya, Roberto
dc.contributor.authorHämäläinen, Raija
dc.contributor.authorJimenez, Abelino
dc.contributor.authorGormaz, Raul
dc.contributor.authorViiri, Jouni
dc.contributor.editorLevrini, Olivia
dc.contributor.editorTasquier, Giulia
dc.date.accessioned2021-02-01T10:54:35Z
dc.date.available2021-02-01T10:54:35Z
dc.date.issued2019
dc.identifier.citationEspinoza, C., Lämsä, J., Araya, R., Hämäläinen, R., Jimenez, A., Gormaz, R., & Viiri, J. (2019). Automatic content analysis in collaborative inquiry-based learning. In O. Levrini, & G. Tasquier (Eds.), <i>Proceedings of ESERA 2019 : The Beauty and Pleasure of Understanding : Engaging with Contemporary Challenges Through Science Education</i> (pp. 2041-2050). University of Bologna. <a href="https://www.esera.org/publications/esera-conference-proceedings/esera-2019" target="_blank">https://www.esera.org/publications/esera-conference-proceedings/esera-2019</a>
dc.identifier.otherCONVID_47767719
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73911
dc.description.abstractIn the field of science education, content analysis is a popular way to analyse collaborative inquiry-based learning (CIBL) processes. However, content analysis is time-consuming when conducted by humans. In this paper, we introduce an automatic content analysis method to identify the different inquiry-based learning (IBL) phases from authentic student face-to-face discussions. We illustrate the potential of automatic content analysis by comparing the results of manual content analysis (conducted by humans) and automatic content analysis (conducted by computers). Both the manual and automatic content analyses were based on manual transcriptions of 11 groups’ CIBL processes. Two researchers performed the manual content analysis, in which each utterance of the groups’ discussions was coded to an IBL phase. First, an algorithm was trained with some of the manually coded utterances to prepare the automatic content analysis. Second, the researchers tested the ability of the algorithm to automatically code the utterances that were not used in the training. The algorithm was a linear support vector machine (SVM) classifier. Since the input of the SVM must be a numerical vector of constant size, we used a topic model to build a feature vector representation for each utterance. The correspondence of the manual and automatic content analyses was 52.9%. The precision of the classifier varied from 49% to 68%, depending on the IBL phase. We discuss issues to consider in the future when improving automatic content analysis methods. We also highlight the potential benefits of automatic content analysis from the viewpoint of science teachers and science education researchersen
dc.format.extent2056
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherUniversity of Bologna
dc.relation.ispartofProceedings of ESERA 2019 : The Beauty and Pleasure of Understanding : Engaging with Contemporary Challenges Through Science Education
dc.relation.urihttps://www.esera.org/publications/esera-conference-proceedings/esera-2019
dc.rightsIn Copyright
dc.subject.otherInquiry-oriented learning
dc.subject.otherQuantitative methods
dc.titleAutomatic content analysis in collaborative inquiry-based learning
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202102011368
dc.contributor.laitosKasvatustieteiden laitosfi
dc.contributor.laitosOpettajankoulutuslaitosfi
dc.contributor.laitosDepartment of Educationen
dc.contributor.laitosDepartment of Teacher Educationen
dc.contributor.oppiaineMatematiikka ja luonnontieteetfi
dc.contributor.oppiaineKasvatustiedefi
dc.contributor.oppiaineMatematiikka ja luonnontieteeten
dc.contributor.oppiaineEducationen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-88-945874-0-1
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2041-2050
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 ESERA and the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceEuropean Science Education Research Association Conference
dc.relation.grantnumber292466
dc.subject.ysotutkiva oppiminen
dc.subject.ysooppimisprosessi
dc.subject.ysotekstinlouhinta
dc.subject.ysoyhteisöllinen oppiminen
dc.subject.ysokeskustelunanalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18173
jyx.subject.urihttp://www.yso.fi/onto/yso/p5103
jyx.subject.urihttp://www.yso.fi/onto/yso/p27112
jyx.subject.urihttp://www.yso.fi/onto/yso/p18727
jyx.subject.urihttp://www.yso.fi/onto/yso/p7828
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationSuomen Akatemia 292466 ja 318095 (the Multidisciplinary Research on Learning and Teaching profiles I and II of JYU)
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright