Weighted estimates for diffeomorphic extensions of homeomorphisms
Xu, H. (2020). Weighted estimates for diffeomorphic extensions of homeomorphisms. Rendiconti Lincei: Matematica e Applicazioni, 31(1), 151-189. https://doi.org/10.4171/RLM/884
Julkaistu sarjassa
Rendiconti Lincei: Matematica e ApplicazioniTekijät
Päivämäärä
2020Tekijänoikeudet
© 2021 EMS Publishing House
Let Ω⊂R2Ω⊂R2 be an internal chord-arc domain and φ:S1→∂Ωφ:S1→∂Ω be a homeomorphism. Then there is a diffeomorphic extension h:D→Ωh:D→Ω of φφ. We study the relationship between weighted integrability of the derivatives of hh and double integrals of φφ and of φ−1φ−1.
Julkaisija
European Mathematical Society Publishing HouseISSN Hae Julkaisufoorumista
1120-6330Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35176553
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The author has been supported by China Scholarship Council (project No. 201706340060).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Controlled diffeomorphic extension of homeomorphisms
Koskela, Pekka; Wang, Zhuang; Xu, Haiqing (Pergamon Press, 2018)Let Ω be an internal chord-arc Jordan domain and φ:S→∂Ω be a homeomorphism. We show that φ has finite dyadic energy if and only if φ has a diffeomorphic extension h:D→Ω which has finite energy. -
Sobolev homeomorphic extensions onto John domains
Koskela, Pekka; Koski, Aleksis; Onninen, Jani (Elsevier Inc., 2020)Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the ... -
Cardioid-Type Domains and Regularity of Homeomorphic Extensions
Xu, Haiqing (Jyväskylän yliopisto, 2019) -
Approximation of W1,p Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian
Campbell, D.; Hencl, S.; Tengvall, Ville (Elsevier Inc., 2018)Let Ω ⊂ R n, n ≥ 4, be a domain and 1 ≤ p < [n/2], where [a] stands for the integer part of a. We construct a homeomorphism f ∈ W1,p((−1, 1)n, R n) such that Jf = det Df > 0 on a set of positive measure and Jf < 0 on a set ... -
Constructing diffeomorphisms and homeomorphisms with prescribed derivative
Goldstein, Paweł; Grochulska, Zofia; Hajłasz, Piotr (Elsevier, 2025)We prove that for any measurable mapping T into the space of matrices with positive determinant, there is a diffeomorphism whose derivative equals T outside a set of measure less than ε. We use this fact to prove that for ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.