Cardioid-Type Domains and Regularity of Homeomorphic Extensions
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2019Tekijänoikeudet
© The Author & University of Jyväskylä
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-7841-9ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Xu, Haiqing (2020). Weighted estimates for diffeomorphic extensions of homeomorphisms. Rendiconti Lincei: Matematica e Applicazioni, 31 (1), 151-189. DOI: 10.4171/RLM/884
- Artikkeli II: Xu, Haiqing (2020). Optimal Extensions of Conformal Mappings from the Unit Disk to Cardioid-Type Domains. Journal of Geometric Analysis, First Online. DOI: 10.1007/s12220-019-00340-x
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [870]
- Väitöskirjat [3599]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Sobolev homeomorphic extensions onto John domains
Koskela, Pekka; Koski, Aleksis; Onninen, Jani (Elsevier Inc., 2020)Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the ... -
Sobolev homeomorphic extensions
Koski, Aleksis; Onninen, Jani (European Mathematical Society, 2021)Let X and Y be ℓ-connected Jordan domains, ℓ∈N, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism φ:∂X→∂Y admits a Sobolev homeomorphic extension h:X¯→Y¯ in W1,1(X,C). If instead X ... -
Controlled diffeomorphic extension of homeomorphisms
Koskela, Pekka; Wang, Zhuang; Xu, Haiqing (Pergamon Press, 2018)Let Ω be an internal chord-arc Jordan domain and φ:S→∂Ω be a homeomorphism. We show that φ has finite dyadic energy if and only if φ has a diffeomorphic extension h:D→Ω which has finite energy. -
Weighted estimates for diffeomorphic extensions of homeomorphisms
Xu, Haiqing (European Mathematical Society Publishing House, 2020)Let Ω⊂R2Ω⊂R2 be an internal chord-arc domain and φ:S1→∂Ωφ:S1→∂Ω be a homeomorphism. Then there is a diffeomorphic extension h:D→Ωh:D→Ω of φφ. We study the relationship between weighted integrability of the derivatives of ... -
Sobolev homeomorphic extensions from two to three dimensions
Hencl, Stanislav; Koski, Aleksis; Onninen, Jani (Elsevier, 2024)We study the basic question of characterizing which boundary homeomorphisms of the unit sphere can be extended to a Sobolev homeomorphism of the interior in 3D space. While the planar variants of this problem are ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.