Näytä suppeat kuvailutiedot

dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorRasku, Jussi
dc.contributor.editorDiez, Pedro
dc.contributor.editorNeittaanmäki, Pekka
dc.contributor.editorPeriaux, Jacques
dc.contributor.editorTuovinen, Tero
dc.contributor.editorPons-Prats, Jordi
dc.date.accessioned2021-01-28T11:36:00Z
dc.date.available2021-01-28T11:36:00Z
dc.date.issued2020
dc.identifier.citationKärkkäinen, T., & Rasku, J. (2020). Application of a Knowledge Discovery Process to Study Instances of Capacitated Vehicle Routing Problems. In P. Diez, P. Neittaanmäki, J. Periaux, T. Tuovinen, & J. Pons-Prats (Eds.), <i>Computation and Big Data for Transport : Digital Innovations in Surface and Air Transport Systems</i> (pp. 77-102). Springer. Computational Methods in Applied Sciences, 54. <a href="https://doi.org/10.1007/978-3-030-37752-6_6" target="_blank">https://doi.org/10.1007/978-3-030-37752-6_6</a>
dc.identifier.otherCONVID_34839708
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73875
dc.description.abstractVehicle Routing Problems (VRP) are computationally challenging, constrained optimization problems, which have central role in logistics management. Usually different solvers are being developed and applied for different kind of problems. However, if descriptive and general features could be extracted to describe such problems and their solution attempts, then one could apply data mining and machine learning methods in order to discover general knowledge on such problems. The aim then would be to improve understanding of the most important characteristics of VRPs from both efficient solution and utilization points of view. The purpose of this article is to address these challenges by proposing a novel feature analysis and knowledge discovery process for Capacitated Vehicle Routing problems (CVRP). Results of knowledge discovery allow us to draw interesting conclusions from relevant characteristics of CVRPs.en
dc.format.extent250
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofComputation and Big Data for Transport : Digital Innovations in Surface and Air Transport Systems
dc.relation.ispartofseriesComputational Methods in Applied Sciences
dc.rightsIn Copyright
dc.subject.othercapacitated vehicle routing problems
dc.subject.otherfeature extraction
dc.subject.otherknowledge discovery
dc.subject.otherrobust statistics
dc.subject.otherautoencoder
dc.titleApplication of a Knowledge Discovery Process to Study Instances of Capacitated Vehicle Routing Problems
dc.typebookPart
dc.identifier.urnURN:NBN:fi:jyu-202101281334
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.relation.isbn978-3-030-37751-9
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange77-102
dc.relation.issn1871-3033
dc.type.versionacceptedVersion
dc.rights.copyright© 2020, Springer Nature Switzerland AG
dc.rights.accesslevelopenAccessfi
dc.subject.ysokoneoppiminen
dc.subject.ysologistiikka
dc.subject.ysoreititys
dc.subject.ysooptimointi
dc.subject.ysotiedonlouhinta
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p9140
jyx.subject.urihttp://www.yso.fi/onto/yso/p23476
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p5520
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-030-37752-6_6
dc.type.okmA3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright