Approximation of heat equation and backward SDEs using random walk : convergence rates
Julkaistu sarjassa
Report / University of Jyväskylä. Department of Mathematics and StatisticsTekijät
Päivämäärä
2018Oppiaine
MatematiikkaThis thesis addresses questions related to approximation arising from the fields of stochastic analysis and partial differential equations. Theoretical results regarding convergence rates are obtained by using discretization schemes where the limiting process,
the Brownian motion, is approximated by a simple discrete-time random walk.
The rate of convergence is derived for a finite-difference approximation of the solution
of a terminal value problem for the backward heat equation. This weak approximation
result is proved for a terminal function which has bounded variation on compact sets.
The sharpness of the according rate is achieved by applying some new results related to
the first exit time behavior of Brownian bridges. In addition, convergence rates in the
L2-norm are proved for Markovian forward-backward stochastic differential equations,
where the underlying forward process is either Brownian motion or a more general Itô
diffusion.
Julkaisija
University of JyväskyläISBN
978-951-39-7576-0ISSN Hae Julkaisufoorumista
1457-8905Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3599]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Mean square rate of convergence for random walk approximation of forward-backward SDEs
Geiss, Christel; Labart, Céline; Luoto, Antti (Cambridge University Press (CUP), 2020)Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk from the underlying Brownian motion B by Skorokhod embedding, one can show -convergence of ... -
Donsker-type theorem for BSDEs : Rate of convergence
Briand, Philippe; Geiss, Christel; Geiss, Stefan; Labart, Céline (International Statistical Institute, 2021)In this paper, we study in the Markovian case the rate of convergence in Wasserstein distance when the solution to a BSDE is approximated by a solution to a BSDE driven by a scaled random walk as introduced in Briand, ... -
Random walk approximation of BSDEs with Hölder continuous terminal condition
Geiss, Christel; Labart, Céline; Luoto, Antti (International Statistical Institute, 2020)In this paper, we consider the random walk approximation of the solution of a Markovian BSDE whose terminal condition is a locally Hölder continuous function of the Brownian motion. We state the rate of the L2-convergence ... -
On Malliavin calculus and approximation of stochastic integrals for Lévy processes
Laukkarinen, Eija (University of Jyväskylä, 2012) -
Markov chain backward stochastic differential equations in modeling insurance policy
Hänninen, Henri (2022)Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.