Show simple item record

dc.contributor.authorHämäläinen, Joonas
dc.contributor.authorAlencar, Alisson S. C.
dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorMattos, César L. C.
dc.contributor.authorSouza Júnior, Amauri H.
dc.contributor.authorGomes, João P. P.
dc.date.accessioned2021-01-26T10:13:56Z
dc.date.available2021-01-26T10:13:56Z
dc.date.issued2020
dc.identifier.citationHämäläinen, J., Alencar, A. S. C., Kärkkäinen, T., Mattos, C. L. C., Souza Júnior, A. H., & Gomes, J. P.P. (2020). Minimal Learning Machine : Theoretical Results and Clustering-Based Reference Point Selection. <i>Journal of Machine Learning Research</i>, <i>21</i>, Article 239. <a href="http://jmlr.org/papers/v21/19-786.html" target="_blank">http://jmlr.org/papers/v21/19-786.html</a>
dc.identifier.otherCONVID_47771379
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73804
dc.description.abstractThe Minimal Learning Machine (MLM) is a nonlinear, supervised approach based on learning linear mapping between distance matrices computed in input and output data spaces, where distances are calculated using a subset of points called reference points. Its simple formulation has attracted several recent works on extensions and applications. In this paper, we aim to address some open questions related to the MLM. First, we detail the theoretical aspects that assure the MLM's interpolation and universal approximation capabilities, which had previously only been empirically verified. Second, we identify the major importance of the task of selecting reference points for the MLM's generalization capability. Several clustering-based methods for reference point selection in regression scenarios are then proposed and analyzed. Based on an extensive empirical evaluation, we conclude that the evaluated methods are both scalable and useful. Specifically, for a small number of reference points, the clustering-based methods outperform the standard random selection of the original MLM formulation.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherJMLR
dc.relation.ispartofseriesJournal of Machine Learning Research
dc.relation.urihttp://jmlr.org/papers/v21/19-786.html
dc.rightsCC BY 4.0
dc.subject.otherMinimal Learning Machine
dc.subject.otheruniversal approximation
dc.subject.otherclustering
dc.subject.otherreference point selection
dc.titleMinimal Learning Machine : Theoretical Results and Clustering-Based Reference Point Selection
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202101261264
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1532-4435
dc.relation.volume21
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2020
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber311877
dc.relation.grantnumber315550
dc.subject.ysokoneoppiminen
dc.subject.ysointerpolointi
dc.subject.ysoapproksimointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p14376
jyx.subject.urihttp://www.yso.fi/onto/yso/p4982
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramProfilointi, SAfi
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundinginformationSuomen Akatemia 311877; Suomen Akatemia 315550
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0