Ti Alloyed α-Ga2O3 : route towards Wide Band Gap Engineering
dc.contributor.author | Barthel, Armin | |
dc.contributor.author | Roberts, Joseph | |
dc.contributor.author | Napari, Mari | |
dc.contributor.author | Frentrup, Martin | |
dc.contributor.author | Huq, Tahmid | |
dc.contributor.author | Kovács, András | |
dc.contributor.author | Oliver, Rachel | |
dc.contributor.author | Chalker, Paul | |
dc.contributor.author | Sajavaara, Timo | |
dc.contributor.author | Massabuau, Fabien | |
dc.date.accessioned | 2021-01-25T14:06:30Z | |
dc.date.available | 2021-01-25T14:06:30Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Barthel, A., Roberts, J., Napari, M., Frentrup, M., Huq, T., Kovács, A., Oliver, R., Chalker, P., Sajavaara, T., & Massabuau, F. (2020). Ti Alloyed α-Ga2O3 : route towards Wide Band Gap Engineering. <i>Micromachines</i>, <i>11</i>(12), Article 1128. <a href="https://doi.org/10.3390/mi11121128" target="_blank">https://doi.org/10.3390/mi11121128</a> | |
dc.identifier.other | CONVID_47793224 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/73788 | |
dc.description.abstract | The suitability of Ti as a band gap modifier for alpha-Ga2O3 was investigated, taking advantage of the isostructural alpha phases and high band gap difference between Ti2O3 and Ga2O3. Films of (Ti,Ga)(2)O-3 were synthesized by atomic layer deposition on sapphire substrates, and characterized to determine how crystallinity and band gap vary with composition for this alloy. We report the deposition of high quality alpha-(TixGa1-x)(2)O-3 films with x = 3.7%. For greater compositions the crystalline quality of the films degrades rapidly, where the corundum phase is maintained in films up to x = 5.3%, and films containing greater Ti fractions being amorphous. Over the range of achieved corundum phase films, that is 0% <= x <= 5.3%, the band gap energy varies by similar to 270 meV. The ability to maintain a crystalline phase at low fractions of Ti, accompanied by a modification in band gap, shows promising prospects for band gap engineering and the development of wavelength specific solar-blind photodetectors based on alpha-Ga2O3. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.ispartofseries | Micromachines | |
dc.rights | CC BY 4.0 | |
dc.subject.other | galliumoksidi | |
dc.subject.other | laajakaistaiset puolijohteet | |
dc.subject.other | gallium oxide | |
dc.subject.other | wide band gap semiconductors | |
dc.subject.other | solar-blind detection | |
dc.subject.other | atomic layer deposition | |
dc.subject.other | thin films | |
dc.subject.other | alloying | |
dc.subject.other | bandgap | |
dc.title | Ti Alloyed α-Ga2O3 : route towards Wide Band Gap Engineering | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202101251250 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.oppiaine | Fysiikka | fi |
dc.contributor.oppiaine | Kiihdytinlaboratorio | fi |
dc.contributor.oppiaine | Physics | en |
dc.contributor.oppiaine | Accelerator Laboratory | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2072-666X | |
dc.relation.numberinseries | 12 | |
dc.relation.volume | 11 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | puolijohteet | |
dc.subject.yso | gallium | |
dc.subject.yso | titaani | |
dc.subject.yso | atomikerroskasvatus | |
dc.subject.yso | ohutkalvot | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18256 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28650 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18969 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27468 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16644 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.3390/mi11121128 | |
jyx.fundinginformation | This project is funded by the Engineering and Physical Sciences Research Council (EPSRC Grants No. EP/P00945X/1 and No. EP/M010589/1). T.N.H. acknowledges funding from the EPSRC Centre for Doctoral Training in Graphene Technology (Grant No. EP/L016087/1). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. | |
dc.type.okm | A1 |