Näytä suppeat kuvailutiedot

dc.contributor.authorAlexeeva, Tatyana A.
dc.contributor.authorBarnett, William A.
dc.contributor.authorKuznetsov, Nikolay V.
dc.contributor.authorMokaev, Timur N.
dc.date.accessioned2021-01-21T14:30:58Z
dc.date.available2021-01-21T14:30:58Z
dc.date.issued2020
dc.identifier.citationAlexeeva, T. A., Barnett, W. A., Kuznetsov, N. V., & Mokaev, T. N. (2020). Dynamics of the Shapovalov mid-size firm model. <i>Chaos, Solitons and Fractals</i>, <i>140</i>, Article 110239. <a href="https://doi.org/10.1016/j.chaos.2020.110239" target="_blank">https://doi.org/10.1016/j.chaos.2020.110239</a>
dc.identifier.otherCONVID_41963238
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73747
dc.description.abstractForecasting and analyses of the dynamics of financial and economic processes such as deviations of macroeconomic aggregates (GDP, unemployment, and inflation) from their long-term trends, asset markets volatility, etc., are challenging because of the complexity of these processes. Important related research questions include, first, how to determine the qualitative properties of the dynamics of these processes, namely, whether the process is stable, unstable, chaotic (deterministic), or stochastic; and second, how best to estimate its quantitative indicators including dimension, entropy, and correlation characteristics. These questions can be studied both empirically and theoretically. In the empirical approach, researchers consider real data expressed in terms of time series, identify the patterns of their dynamics, and then forecast the short- and long-term behavior of the process. The second approach is based on postulating the laws of dynamics for the process, deriving mathematical dynamical models based on these laws, and conducting subsequent analytical investigation of the dynamics generated by the models. To implement these approaches, either numerical or analytical methods can be used. While numerical methods make it possible to study dynamical models, the possibility of obtaining reliable results using them is significantly limited due to the necessity of performing calculations only over finite time intervals, rounding-off errors in numerical methods, and the unbounded space of initial data sets. Analytical methods allow researchers to overcome these limitations and to identify the exact qualitative and quantitative characteristics of the dynamics of the process. However, effective analytical applications are often limited to low-dimensional models (in the literature, two-dimensional dynamical systems are most often studied). In this paper, we develop analytical methods for the study of deterministic dynamical systems based on the Lyapunov stability theory and on chaos theory. These methods make it possible not only to obtain analytical stability criteria and to estimate limiting behavior (to localize self-excited and hidden attractors and identify multistability), but also to overcome difficulties related to implementing reliable numerical analysis of quantitative indicators such as Lyapunov exponents and the Lyapunov dimension. We demonstrate the effectiveness of the proposed methods using the mid-size firm model suggested by Shapovalov.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesChaos, Solitons and Fractals
dc.rightsCC BY-NC-ND 4.0
dc.subject.othermid-size firm model
dc.subject.otherforecasting
dc.subject.otherglobal stability
dc.subject.otherchaos
dc.subject.otherabsorbing set
dc.subject.otherLyapunov exponents
dc.subject.othermultistability
dc.titleDynamics of the Shapovalov mid-size firm model
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202101211213
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0960-0779
dc.relation.volume140
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Elsevier Ltd. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.subject.ysodynaamiset systeemit
dc.subject.ysotaloudelliset ennusteet
dc.subject.ysotaloudelliset mallit
dc.subject.ysotalousmatematiikka
dc.subject.ysokaaosteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38899
jyx.subject.urihttp://www.yso.fi/onto/yso/p16768
jyx.subject.urihttp://www.yso.fi/onto/yso/p15699
jyx.subject.urihttp://www.yso.fi/onto/yso/p9288
jyx.subject.urihttp://www.yso.fi/onto/yso/p6339
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.chaos.2020.110239
jyx.fundinginformationWe acknowledge support from the Russian Science Foundation: project 19-41-02002 (Sections 1–5), and the Leading Scientific Schools of Russia: project NSh-2624.2020.1 (Sections 6–7).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0