Näytä suppeat kuvailutiedot

dc.contributor.authorZhu, Bin
dc.contributor.authorWei, Zhouchao
dc.contributor.authorEscalante-González, R.J.
dc.contributor.authorKuznetsov, Nikolay V.
dc.date.accessioned2021-01-18T11:27:26Z
dc.date.available2021-01-18T11:27:26Z
dc.date.issued2020
dc.identifier.citationZhu, B., Wei, Z., Escalante-González, R.J., & Kuznetsov, N. V. (2020). Existence of homoclinic orbits and heteroclinic cycle in a class of three-dimensional piecewise linear systems with three switching manifolds. <i>Chaos</i>, <i>30</i>(12), Article 123143. <a href="https://doi.org/10.1063/5.0032702" target="_blank">https://doi.org/10.1063/5.0032702</a>
dc.identifier.otherCONVID_47617359
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73668
dc.description.abstractIn this article, we construct a kind of three-dimensional piecewise linear (PWL) system with three switching manifolds and obtain four theorems with regard to the existence of a homoclinic orbit and a heteroclinic cycle in this class of PWL system. The first theorem studies the existence of a heteroclinic cycle connecting two saddle-foci. The existence of a homoclinic orbit connecting one saddle-focus is investigated in the second theorem, and the third theorem examines the existence of a homoclinic orbit connecting another saddle-focus. The last one proves the coexistence of the heteroclinic cycle and two homoclinic orbits for the same parameters. Numerical simulations are given as examples and the results are consistent with the predictions of theorems. From the Shil’nikov theorems, it is known that the existence of a homoclinic orbit and a heteroclinic cycle play a key and important role in the chaos research of dynamic systems. Moreover, chaos and piecewise linear (PWL) systems have important applications in many fields such as electronic circuits, biology, machinery, and so on. Naturally, the research on the existence of homoclinic orbits and heteroclinic cycles of piecewise linear systems is very meaningful. However, it is not easy to find the homoclinic orbit and the heteroclinic cycle of smooth dynamic systems, especially for higher-dimensional piecewise linear systems with multiple switching manifolds, which will inevitably make the exploration of this problem more complicated. Therefore, this article studies the existence of homoclinic orbits and heteroclinic cycles in a style of the piecewise linear system with three switching manifolds.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesChaos
dc.rightsIn Copyright
dc.titleExistence of homoclinic orbits and heteroclinic cycle in a class of three-dimensional piecewise linear systems with three switching manifolds
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202101181142
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1054-1500
dc.relation.numberinseries12
dc.relation.volume30
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 Author(s).
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysodynaamiset systeemit
dc.subject.ysokaaosteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38899
jyx.subject.urihttp://www.yso.fi/onto/yso/p6339
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1063/5.0032702
jyx.fundinginformationThis work was supported by the National Natural Science Foundation of China (NNSFC) (No. 11772306), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY20A020001), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (No. CUGGC05). The last author acknowledges support from the Russian Leading Scientific school programm (NSh-2624.2020.1).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright