The environment query system and the spatial query system used for AI -agency in games, a comparison
Authors
Date
2021Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tutkimuksessa verrattiin kahta tekoälyn tukena käytettävää
järjestelmää, joita käytetään ympäristön ja tekoälyagentin välisen vuorovaikutuksen ohjaamisessa,
jotta saataisiin tietää kumpi on vertauskriteerien pohjalta kehittyneempi ja moderneihin tarpeisiin
vastaava järjestelmä. Aiheesta on löydettävissä hyvin vähän tieteellisiä tekstejä. Ensimmäinen
järjestelmistä on EQS, Environment Query System, joka kuuluu Unreal Engine 4
i
-pelimoottoriin. Toinen järjestelmä on SQS, Spatial Query System, joka on osa Kythera AIpelimoottoria.
SQS havaittiin kehittyneemmäksi ja suunnitteluaatteiltaan kehittäjälle mielekkäämmäksi
järjestelmäksi. Vertailun tuloksien ja tulosten perusteluiden toivotaan hyödyttävän
niin pelinkehittäjiä, jotka valitsevat pelimoottoria projektilleen, kuin tällaisten järjestelmien
kehittäjiäkin. This study compared two systems used in game artificial intelligence that direct
the interaction of AI agents and the game world around them. Based on the evaluation
criteria the more advanced system capable of meeting the needs of modern development was
determined. Based on the literature review we made, scientific literature on the topic seems
scarce. The first of the systems is EQS, the Environment Query System which is part of the
Unreal Engine 4 game engine. The second platform is SQS or Spatial Query System, part
of the Kythera AI middleware. SQS was found to be the system that is a more advanced
and meaningful option for a developer by its design ideals. It is hoped that the results and
rationale behind the comparison will benefit both game developers choosing a game engine
for their project as well as those behind the development such systems.
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29367]
Related items
Showing items with similar title or keywords.
-
Design Systems for Intelligent Technology
Myllylä, Mari; Karvonen, Antero; Koskinen, Hanna (AHFE international, 2024)Intelligent technology seems poised to emerge with unprecedented force across many domains of human activity. Advanced technologies (e.g. artificial intelligence (AI)–based applications and services) hold great promise to ... -
Comparison of feature importance measures as explanations for classification models
Saarela, Mirka; Jauhiainen, Susanne (Springer, 2021)Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature ... -
Implementing AI Ethics in a Software Engineering Project-Based Learning Environment : The Case of WIMMA Lab
Agbese, Mamia Ori-otse; Rintamaki, Marko; Mohanani, Rahul; Abrahamsson, Pekka (Springer, 2022)Increasing ethical concerns necessitate AI ethics forms part of practical software engineering (SE) foundational educational learning. Using an ethnographic approach and focus group discussions in a SE project-based learning ... -
“This is Just a Prototype” : How Ethics Are Ignored in Software Startup-Like Environments
Vakkuri, V.; Kemell, K. K.; Jantunen, M., Abrahamsson, P. (Springer, 2020)Artificial Intelligence (AI) solutions are becoming increasingly common in software development endeavors, and consequently exert a growing societal influence as well. Due to their unique nature, AI based systems influence ... -
ECCOLA : a Method for Implementing Ethically Aligned AI Systems
Vakkuri, Ville; Kemell, Kai-Kristian; Abrahamsson, Pekka (IEEE, 2020)Various recent Artificial Intelligence (AI) system failures, some of which have made the global headlines, have highlighted issues in these systems. These failures have resulted in calls for more ethical AI systems that ...