Show simple item record

dc.contributor.authorYan, Rui
dc.contributor.authorLi, Fan
dc.contributor.authorZhou, DongDong
dc.contributor.authorRistaniemi, Tapani
dc.contributor.authorCong, Fengyu
dc.date.accessioned2020-12-29T07:40:51Z
dc.date.available2020-12-29T07:40:51Z
dc.date.issued2020
dc.identifier.citationYan, R., Li, F., Zhou, D., Ristaniemi, T., & Cong, F. (2020). A Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series. In <i>EUSIPCO 2020 : 28th European Signal Processing Conference</i> (pp. 1090-1094). IEEE. European Signal Processing Conference. <a href="https://doi.org/10.23919/Eusipco47968.2020.9287518" target="_blank">https://doi.org/10.23919/Eusipco47968.2020.9287518</a>
dc.identifier.otherCONVID_43490194
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73485
dc.description.abstractSleep scoring is a fundamental but time-consuming process in any sleep laboratory. Automatic sleep scoring is crucial and urgent to help address the increasing unmet need for sleep research. Therefore, this paper aims to develop an end-to-end deep learning architecture using raw polysomnographic recordings to automate sleep scoring. The proposed model adopts two-dimensional convolutional neural networks (2D-CNN) to automatically learn features from multi-modality signals, together with a "squeeze and excitation" block for recalibrating channel-wise feature responses. The learnt representations are finally fed to a softmax classifier to generate predictions for each sleep stage. The model performance is evaluated on two public sleep datasets (SHHS and Sleep-EDF) with different available channels. The results have shown that our model achieves an overall accuracy of 85.2% on the SHHS dataset and an accuracy of 85% on the Sleep-EDF dataset. We have also demonstrated that the proposed architecture not only is able to handle various numbers of input channels and several signal modalities from different datasets but also exhibits short runtimes and low computational cost.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofEUSIPCO 2020 : 28th European Signal Processing Conference
dc.relation.ispartofseriesEuropean Signal Processing Conference
dc.rightsIn Copyright
dc.subject.otherpolysomnography
dc.subject.otherautomatic sleep scoring
dc.subject.othermultimodality analysis
dc.subject.otherdeep learning
dc.subject.othertransfer learning
dc.titleA Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202012297415
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMonitieteinen aivotutkimuskeskusfi
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineCentre for Interdisciplinary Brain Researchen
dc.contributor.oppiaineSchool of Wellbeingen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-7281-5001-7
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1090-1094
dc.relation.issn2219-5491
dc.type.versionacceptedVersion
dc.rights.copyright© IEEE, 2020
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceEuropean Signal Processing Conference
dc.subject.ysosignaalianalyysi
dc.subject.ysoaikasarjat
dc.subject.ysosignaalinkäsittely
dc.subject.ysouni (lepotila)
dc.subject.ysounitutkimus
dc.subject.ysoaivotutkimus
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p12290
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p8299
jyx.subject.urihttp://www.yso.fi/onto/yso/p21988
jyx.subject.urihttp://www.yso.fi/onto/yso/p23705
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.23919/Eusipco47968.2020.9287518
jyx.fundinginformationThis work is supported by the scholarship from China Scholarship Council (Nos. 201606060227).
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright