dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Annala, Leevi | |
dc.contributor.author | Rahkonen, Samuli | |
dc.contributor.author | Nevalainen, Olli | |
dc.contributor.author | Honkavaara, Eija | |
dc.contributor.author | Tuominen, Sakari | |
dc.contributor.author | Viljanen, Niko | |
dc.contributor.author | Hakala, Teemu | |
dc.date.accessioned | 2020-12-23T10:39:18Z | |
dc.date.available | 2020-12-23T10:39:18Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Pölönen, I., Annala, L., Rahkonen, S., Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., & Hakala, T. (2019). Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network. In <i>WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing</i>. IEEE. <a href="https://doi.org/10.1109/WHISPERS.2018.8747253" target="_blank">https://doi.org/10.1109/WHISPERS.2018.8747253</a> | |
dc.identifier.other | CONVID_31255771 | |
dc.identifier.other | TUTKAID_81835 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/73412 | |
dc.description.abstract | In this study we apply 3D convolutional neural network (CNN) for tree species identification. Study includes the three
most common Finnish tree species. Study uses a relatively large high-resolution spectral data set, which contains also a digital surface model for the trees. Data has been gathered using an unmanned aerial vehicle, a framing hyperspectral imager and a regular RGB camera. Achieved classification results are promising by with overall accuracy of 96.2 % for the classification of the validation data set. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing | |
dc.rights | In Copyright | |
dc.subject.other | 3D | |
dc.subject.other | convolutional neural network | |
dc.subject.other | UAV | |
dc.title | Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202012117078 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2020-12-11T10:15:06Z | |
dc.relation.isbn | 978-1-7281-1581-8 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | nonPeerReviewed | |
dc.relation.issn | 2158-6276 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2018 IEEE | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing | |
dc.relation.grantnumber | 1711/31/2016 | |
dc.subject.yso | spektrikuvaus | |
dc.subject.yso | puulajit | |
dc.subject.yso | 3D-mallinnus | |
dc.subject.yso | hahmontunnistus (tietotekniikka) | |
dc.subject.yso | neuroverkot | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26364 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13848 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26739 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8266 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/WHISPERS.2018.8747253 | |
dc.relation.funder | TEKES | fi |
dc.relation.funder | TEKES | en |
jyx.fundingprogram | Elinkeinoelämän kanssa verkottunut tutkimus, TEKES | fi |
jyx.fundingprogram | Public research networked with companies, TEKES | en |
jyx.fundinginformation | This research has been co-financed by Finnish Funding Agency for Innovation Tekes (grants 2208/31/2013 and 1711/31/2016) | |
dc.type.okm | B3 | |