dc.contributor.author | Postila, Pekka | |
dc.contributor.author | Swanson, Geoffrey | |
dc.contributor.author | Pentikäinen, Olli | |
dc.date.accessioned | 2020-12-23T10:27:06Z | |
dc.date.available | 2020-12-23T10:27:06Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | Postila, P., Swanson, G., & Pentikäinen, O. (2010). Exploring kainate receptor pharmacology using molecular dynamics simulations. <i>Neuropharmacology</i>, <i>58</i>, 515-527. <a href="https://doi.org/10.1016/j.neuropharm.2009.08.019" target="_blank">https://doi.org/10.1016/j.neuropharm.2009.08.019</a> | |
dc.identifier.other | CONVID_19338616 | |
dc.identifier.other | TUTKAID_39072 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/73411 | |
dc.description.abstract | Ionotropic glutamate receptors (iGluRs) are enticing targets for pharmaceutical research; however, the search for selective ligands is a laborious experimental process. Here we introduce a purely computational procedure as an approach to evaluate ligand–iGluR pharmacology. The ligands are docked into the closed ligand-binding domain and during the molecular dynamics (MD) simulation the bi-lobed interface either opens (partial agonist/antagonist) or stays closed (agonist) according to the properties of the ligand. The procedure is tested with closely related set of analogs of the marine toxin dysiherbaine bound to GluK1 kainate receptor. The modeling is set against the abundant binding data and electrophysiological analyses to test reproducibility and predictive value of the procedure. The MD simulations produce detailed binding modes for analogs, which in turn are used to define structure–activity relationships. The simulations suggest correctly that majority of the analogs induce full domain closure (agonists) but also distinguish exceptions generated by partial agonists and antagonists. Moreover, we report ligand-induced opening of the GluK1 ligand-binding domain in free MD simulations. The strong correlation between in silico analysis and the experimental data imply that MD simulations can be utilized as a predictive tool for iGluR pharmacology and functional classification of ligands. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.relation.ispartofseries | Neuropharmacology | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | glutamaattireseptori | |
dc.subject.other | kainaattireseptori | |
dc.subject.other | glutamate receptor | |
dc.subject.other | kainate receptor | |
dc.title | Exploring kainate receptor pharmacology using molecular dynamics simulations | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202012147081 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.contributor.oppiaine | Solu- ja molekyylibiologia | fi |
dc.contributor.oppiaine | Cell and Molecular Biology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2020-12-14T04:15:08Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 515-527 | |
dc.relation.volume | 58 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 Elsevier | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | farmakologia | |
dc.subject.yso | molekyylidynamiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1738 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29332 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.neuropharm.2009.08.019 | |
dc.type.okm | A1 | |