Show simple item record

dc.contributor.authorMelander, Marko M.
dc.date.accessioned2020-12-23T09:46:24Z
dc.date.available2020-12-23T09:46:24Z
dc.date.issued2020
dc.identifier.citationMelander, M. M. (2020). Grand Canonical Rate Theory for Electrochemical and Electrocatalytic Systems I : General Formulation and Proton-coupled Electron Transfer Reactions. <i>Journal of the Electrochemical Society</i>, <i>167</i>(11), Article 116518. <a href="https://doi.org/10.1149/1945-7111/aba54b" target="_blank">https://doi.org/10.1149/1945-7111/aba54b</a>
dc.identifier.otherCONVID_42677197
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73407
dc.description.abstractElectrochemical interfaces present a serious challenge for atomistic modelling. Electrochemical thermodynamics are naturally addressed within the grand canonical ensemble (GCE) but the lack of a fixed potential rate theory impedes fundamental understanding and computation of electrochemical rate constants. Herein, a generally valid electrochemical rate theory is developed by extending equilibrium canonical rate theory to the GCE. The extension provides a rigorous framework for addressing classical reactions, nuclear tunneling and other quantum effects, non-adiabaticity etc. from a single unified theoretical framework. The rate expressions can be parametrized directly with self-consistent GCE-DFT methods. These features enable a well-defined first principles route to addressing reaction barriers and prefactors (proton-coupled) electron transfer reactions at fixed potentials. Specific rate equations are derived for adiabatic classical transition state theory and adiabatic GCE empirical valence bond (GCE-EVB) theory resulting in a Marcus-like expression within GCE. From GCE-EVB general free energy relations for electrochemical systems are derived. The GCE-EVB theory is demonstrated by predicting the PCET rates and transition state geometries for the adiabatic Au-catalyzed acidic Volmer reaction using (constrained) GCE-DFT. The work herein provides the theoretical basis and practical computational approaches to electrochemical rates with numerous applications in physical and computational electrochemistry.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElectrochemical Society
dc.relation.ispartofseriesJournal of the Electrochemical Society
dc.rightsIn Copyright
dc.titleGrand Canonical Rate Theory for Electrochemical and Electrocatalytic Systems I : General Formulation and Proton-coupled Electron Transfer Reactions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202012237348
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0013-4651
dc.relation.numberinseries11
dc.relation.volume167
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Electrochemical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysotermodynamiikka
dc.subject.ysosähkökemia
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysokvanttikemia
dc.subject.ysoteoreettinen tutkimus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14558
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p19301
jyx.subject.urihttp://www.yso.fi/onto/yso/p16390
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1149/1945-7111/aba54b
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright