Inverse problems for elliptic equations with power type nonlinearities
Lassas, M., Liimatainen, T., Lin, Y.-H., & Salo, M. (2021). Inverse problems for elliptic equations with power type nonlinearities. Journal de Mathematiques Pures et Appliquees, 145, 44-82. https://doi.org/10.1016/j.matpur.2020.11.006
Published in
Journal de Mathematiques Pures et AppliqueesDate
2021Discipline
Inversio-ongelmien huippuyksikköMatematiikkaCentre of Excellence in Inverse ProblemsMathematicsAccess restrictions
Embargoed until: 2023-02-01Request copy from author
Copyright
© 2020 Elsevier
We introduce a method for solving Calderón type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension 2, and a potential on transversally anisotropic manifolds in dimensions . In the Euclidean case, we show that one can solve the Calderón problem for certain semilinear equations in a surprisingly simple way without using complex geometrical optics solutions.
Publisher
ElsevierISSN Search the Publication Forum
0021-7824Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/47043836
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Academy Project, AoF; Centre of Excellence, AoF
Additional information about funding
All authors were supported by the Finnish Centre of Excellence in Inverse Modelling and Imaging (Academy of Finland grant 284715). M.S. was also supported by the Academy of Finland (grant 309963) and by the European Research Council under Horizon 2020 (ERC CoG 770924). Y.-H. L. is partially supported by the Ministry of Science and Technology, Taiwan, under the Columbus Pro-gram:MOST-109-2636-M-009-006, 2020-2025.

License
Related items
Showing items with similar title or keywords.
-
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
The Calderón problem for the fractional Schrödinger equation
Ghosh, Tuhin; Salo, Mikko; Uhlmann, Gunther (Mathematical Sciences Publishers, 2020)We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness ... -
The Linearized Calderón Problem on Complex Manifolds
Guillarmou, Colin; Salo, Mikko; Tzou, Leo (Springer, 2019)In this note we show that on any compact subdomain of a K¨ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to ... -
Calderón's problem for p-laplace type equations
Brander, Tommi (University of Jyväskylä, 2016)We investigate a generalization of Calderón’s problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation div σ ... -
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ...