Show simple item record

dc.contributor.authorSchultz, Timo
dc.date.accessioned2020-12-09T07:10:22Z
dc.date.available2020-12-09T07:10:22Z
dc.date.issued2021
dc.identifier.citationSchultz, T. (2021). On one-dimensionality of metric measure spaces. <i>Proceedings of the American Mathematical Society</i>, <i>149</i>(1), 383-396. <a href="https://doi.org/10.1090/proc/15162" target="_blank">https://doi.org/10.1090/proc/15162</a>
dc.identifier.otherCONVID_47292076
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73037
dc.description.abstractIn this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to an arbitrary measure, is a one-dimensional manifold (possibly with boundary). As an immediate corollary we obtain that if a metric measure space is a very strict CD(K, N) -space or an essentially non-branching MCP(K, N)-space with some open set isometric to an interval, then it is a one-dimensional manifold. We also obtain the same conclusion for a metric measure space which has a point in which the Gromov-Hausdorff tangent is unique and isometric to the real line, and for which the optimal transport maps not only exist but are unique. Again, we obtain an analogous corollary in the setting of essentially non-branching MCP(K, N)-spacesen
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.ispartofseriesProceedings of the American Mathematical Society
dc.rightsCC BY-NC-ND 4.0
dc.subject.otheroptimal transport
dc.subject.otherRicci curvature
dc.subject.othermetric measure spaces
dc.subject.otherGromov--Hausdorff tangents
dc.titleOn one-dimensionality of metric measure spaces
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202012096980
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange383-396
dc.relation.issn0002-9939
dc.relation.numberinseries1
dc.relation.volume149
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 American Mathematical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber314789
dc.subject.ysodifferentiaaligeometria
dc.subject.ysometriset avaruudet
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1090/proc/15162
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe author acknowledges the support by the Academy of Finland, project #314789
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0