dc.contributor.author | Gandhi, Rohan | |
dc.contributor.author | Garimella, Arun | |
dc.contributor.author | Toiviainen, Petri | |
dc.contributor.author | Alluri, Vinoo | |
dc.contributor.editor | Mahmud, Mufti | |
dc.contributor.editor | Vassanelli, Stefano | |
dc.contributor.editor | Kaiser, M. Shamim | |
dc.contributor.editor | Zhong, Ning | |
dc.date.accessioned | 2020-12-02T06:56:06Z | |
dc.date.available | 2020-12-02T06:56:06Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Gandhi, R., Garimella, A., Toiviainen, P., & Alluri, V. (2020). Dynamic Functional Connectivity Captures Individuals’ Unique Brain Signatures. In M. Mahmud, S. Vassanelli, M. S. Kaiser, & N. Zhong (Eds.), <i>BI 2020 : 13th International Conference on Brain Informatics, Proceedings</i> (pp. 97-106). Springer. Lecture Notes in Computer Science, 12241. <a href="https://doi.org/10.1007/978-3-030-59277-6_9" target="_blank">https://doi.org/10.1007/978-3-030-59277-6_9</a> | |
dc.identifier.other | CONVID_42885274 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/72913 | |
dc.description.abstract | Recent neuroimaging evidence suggest that there exists a unique individual-specific functional connectivity (FC) pattern consistent across tasks. The objective of our study is to utilize FC patterns to identify an individual using a supervised machine learning approach. To this end, we use two previously published data sets that comprises resting-state and task-based fMRI responses. We use static FC measures as input to a linear classifier to evaluate its performance. We additionally extend this analysis to capture dynamic FC using two approaches: the common sliding window approach and the more recent phase synchrony-based measure. We found that the classification models using dynamic FC patterns as input outperform their static analysis counterpart by a significant margin for both data sets. Furthermore, sliding window-based analysis proved to capture more individual-specific brain connectivity patterns than phase synchrony measures for resting-state data while the reverse pattern was observed for the task-based data set. Upon investigating the effects of feature reduction, we found that feature elimination significantly improved results up to a point with near-perfect classification accuracy for the task-based data set while a gradual decrease in the accuracy was observed for resting-state data set. The implications of these findings are discussed. The results we have are promising and present a novel direction to investigate further. | en |
dc.format.extent | 378 | |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | BI 2020 : 13th International Conference on Brain Informatics, Proceedings | |
dc.relation.ispartofseries | Lecture Notes in Computer Science | |
dc.rights | In Copyright | |
dc.subject.other | fMRI | |
dc.subject.other | functional connectivity | |
dc.subject.other | classification | |
dc.subject.other | variance inflation factor | |
dc.subject.other | individual differences | |
dc.title | Dynamic Functional Connectivity Captures Individuals’ Unique Brain Signatures | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202012026874 | |
dc.contributor.laitos | Musiikin, taiteen ja kulttuurin tutkimuksen laitos | fi |
dc.contributor.laitos | Department of Music, Art and Culture Studies | en |
dc.contributor.oppiaine | Musiikkitiede | fi |
dc.contributor.oppiaine | Musicology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-3-030-59276-9 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 97-106 | |
dc.relation.issn | 0302-9743 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Springer Nature Switzerland AG 2020 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | International Conference on Brain Informatics | |
dc.subject.yso | yksilö | |
dc.subject.yso | tunnistaminen | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | toiminnallinen magneettikuvaus | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9260 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8265 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24211 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/978-3-030-59277-6_9 | |
dc.type.okm | A4 | |