Show simple item record

dc.contributor.authorGandhi, Rohan
dc.contributor.authorGarimella, Arun
dc.contributor.authorToiviainen, Petri
dc.contributor.authorAlluri, Vinoo
dc.contributor.editorMahmud, Mufti
dc.contributor.editorVassanelli, Stefano
dc.contributor.editorKaiser, M. Shamim
dc.contributor.editorZhong, Ning
dc.date.accessioned2020-12-02T06:56:06Z
dc.date.available2020-12-02T06:56:06Z
dc.date.issued2020
dc.identifier.citationGandhi, R., Garimella, A., Toiviainen, P., & Alluri, V. (2020). Dynamic Functional Connectivity Captures Individuals’ Unique Brain Signatures. In M. Mahmud, S. Vassanelli, M. S. Kaiser, & N. Zhong (Eds.), <i>BI 2020 : 13th International Conference on Brain Informatics, Proceedings</i> (pp. 97-106). Springer. Lecture Notes in Computer Science, 12241. <a href="https://doi.org/10.1007/978-3-030-59277-6_9" target="_blank">https://doi.org/10.1007/978-3-030-59277-6_9</a>
dc.identifier.otherCONVID_42885274
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72913
dc.description.abstractRecent neuroimaging evidence suggest that there exists a unique individual-specific functional connectivity (FC) pattern consistent across tasks. The objective of our study is to utilize FC patterns to identify an individual using a supervised machine learning approach. To this end, we use two previously published data sets that comprises resting-state and task-based fMRI responses. We use static FC measures as input to a linear classifier to evaluate its performance. We additionally extend this analysis to capture dynamic FC using two approaches: the common sliding window approach and the more recent phase synchrony-based measure. We found that the classification models using dynamic FC patterns as input outperform their static analysis counterpart by a significant margin for both data sets. Furthermore, sliding window-based analysis proved to capture more individual-specific brain connectivity patterns than phase synchrony measures for resting-state data while the reverse pattern was observed for the task-based data set. Upon investigating the effects of feature reduction, we found that feature elimination significantly improved results up to a point with near-perfect classification accuracy for the task-based data set while a gradual decrease in the accuracy was observed for resting-state data set. The implications of these findings are discussed. The results we have are promising and present a novel direction to investigate further.en
dc.format.extent378
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofBI 2020 : 13th International Conference on Brain Informatics, Proceedings
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rightsIn Copyright
dc.subject.otherfMRI
dc.subject.otherfunctional connectivity
dc.subject.otherclassification
dc.subject.othervariance inflation factor
dc.subject.otherindividual differences
dc.titleDynamic Functional Connectivity Captures Individuals’ Unique Brain Signatures
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202012026874
dc.contributor.laitosMusiikin, taiteen ja kulttuurin tutkimuksen laitosfi
dc.contributor.laitosDepartment of Music, Art and Culture Studiesen
dc.contributor.oppiaineMusiikkitiedefi
dc.contributor.oppiaineMusicologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-3-030-59276-9
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange97-106
dc.relation.issn0302-9743
dc.type.versionacceptedVersion
dc.rights.copyright© Springer Nature Switzerland AG 2020
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Brain Informatics
dc.subject.ysoyksilö
dc.subject.ysotunnistaminen
dc.subject.ysokoneoppiminen
dc.subject.ysotoiminnallinen magneettikuvaus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9260
jyx.subject.urihttp://www.yso.fi/onto/yso/p8265
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p24211
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-030-59277-6_9
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright