Show simple item record

dc.contributor.authorOomen, Rebekah A.
dc.contributor.authorKuparinen, Anna
dc.contributor.authorHutchings, Jeffrey A.
dc.date.accessioned2020-11-26T12:27:00Z
dc.date.available2020-11-26T12:27:00Z
dc.date.issued2020
dc.identifier.citationOomen, R. A., Kuparinen, A., & Hutchings, J. A. (2020). Consequences of single-locus and tightly linked genomic architectures for evolutionary responses to environmental change. <i>Journal of Heredity</i>, <i>111</i>(4), 319-332. <a href="https://doi.org/10.1093/jhered/esaa020" target="_blank">https://doi.org/10.1093/jhered/esaa020</a>
dc.identifier.otherCONVID_41512595
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72832
dc.description.abstractGenetic and genomic architectures of traits under selection are key factors influencing evolutionary responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing and eco-evolutionary modelling are unlocking the potential for integrating genomic information into predictions of population responses to environmental change. Using eco-evolutionary simulations, we demonstrate that hypothetical single-locus control of a life history trait produces highly variable and unpredictable harvesting-induced evolution relative to the classically applied multi-locus model. Single-locus control of complex traits is thought to be uncommon, yet blocks of linked genes, such as those associated with some types of structural genomic variation, have emerged as taxonomically widespread phenomena. Inheritance of linked architectures resembles that of single loci, thus enabling single-locus-like modeling of polygenic adaptation. Yet, the number of loci, their effect sizes, and the degree of linkage among them all occur along a continuum. We review how linked architectures are often associated, directly or indirectly, with traits expected to be under selection from anthropogenic stressors and are likely to play a large role in adaptation to environmental disturbance. We suggest using single-locus models to explore evolutionary extremes and uncertainties when the trait architecture is unknown, refining parameters as genomic information becomes available, and explicitly incorporating linkage among loci when possible. By overestimating the complexity (e.g., number of independent loci) of the genomic architecture of traits under selection, we risk underestimating the complexity (e.g., nonlinearity) of their evolutionary dynamics.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.ispartofseriesJournal of Heredity
dc.rightsCC BY 4.0
dc.subject.otherclimate change
dc.subject.otherevolutionary simulation
dc.subject.othergenetic architecture
dc.subject.otherlinkage disequilibrium
dc.subject.otherrecombination rate
dc.subject.otherstructural genomic variation
dc.titleConsequences of single-locus and tightly linked genomic architectures for evolutionary responses to environmental change
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202011266798
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineAkvaattiset tieteetfi
dc.contributor.oppiaineAquatic Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.format.pagerange319-332
dc.relation.issn0022-1503
dc.relation.numberinseries4
dc.relation.volume111
dc.type.versionpublishedVersion
dc.rights.copyright© The American Genetic Association 2020
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber317495
dc.relation.grantnumber770884
dc.relation.grantnumber770884
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/770884/EU//COMPLEX-FISH
dc.subject.ysoperimä
dc.subject.ysoilmastonmuutokset
dc.subject.ysoevoluutio
dc.subject.ysoympäristönmuutokset
dc.subject.ysogeenit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8862
jyx.subject.urihttp://www.yso.fi/onto/yso/p5729
jyx.subject.urihttp://www.yso.fi/onto/yso/p8278
jyx.subject.urihttp://www.yso.fi/onto/yso/p13431
jyx.subject.urihttp://www.yso.fi/onto/yso/p147
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1093/jhered/esaa020
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderAcademy of Finlanden
dc.relation.funderEuropean Commissionen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramERC Consolidator Grantfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramERC Consolidator Granten
jyx.fundinginformationThis work was supported by a James S. McDonnell Foundation 21st Century Postdoctoral Fellowship Award to RAO; the Academy of Finland to AK; the European Research Council (grant number COMPLEX-FISH 770884) to AK; the Natural Sciences and Engineering Research Council of Canada Discovery Grant to JAH; the Killam Trusts to JAH; and Loblaw Companies Limited to JAH. The present study reflects only the authors’ view and the European Research Council is not responsible for any use that may be made of the information it contains.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0