Show simple item record

dc.contributor.authorHakola, Anna-Maria
dc.contributor.authorPölönen, Ilkka
dc.contributor.editorBruzzone, Lorenzo
dc.contributor.editorBovolo, Francesca
dc.contributor.editorSanti, Emanuele
dc.date.accessioned2020-11-02T09:02:25Z
dc.date.available2020-11-02T09:02:25Z
dc.date.issued2020
dc.identifier.citationHakola, A.-M., & Pölönen, I. (2020). Minimal learning machine in hyperspectral imaging classification . In L. Bruzzone, F. Bovolo, & E. Santi (Eds.), <i>Image and Signal Processing for Remote Sensing XXVI</i> (Article 115330R). SPIE. Proceedings of SPIE : the International Society for Optical Engineering, 11533. <a href="https://doi.org/10.1117/12.2573578" target="_blank">https://doi.org/10.1117/12.2573578</a>
dc.identifier.otherCONVID_43385662
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72431
dc.description.abstractA hyperspectral (HS) image is typically a stack of frames, where each frame represents the intensity of a different wavelength of light. Each spatial pixel has a spectrum. In the classification of the HS image, each spectrum is classified pixel-by-pixel. In some of the real-time applications, the amount of the HS image data causes performance challenges. Those issues relate to the platforms (e.g. drones) payload restrictions, the issues of the available energy and to the complexity of the machine learning models. In this study, we introduce the minimal learning machine (MLM) as a computationally cheap training and classification machine learning method for the hyperspectral imaging classification. MLM is a distance-based method that utilizes mapping between input and and output distances. Input distance is a distance between the training set and its subset R. Output distance is corresponding distances between the label values of the training set and the subset R. We propose a training point selection framework, which reduces the number of data points in the R by selecting the points class-by-class, in the direction of the principal components of each class. We test MLM’s performance against four other classification machine learning methods: Random Forest, Artificial Neural Network, Support Vector Machine and Nearest Neighbours classifier with three known hyper- spectral data sets. As the main outcomes, we will show how the performance is affected by the size of the subset R. We compare our subset selection method MLM’s performance to the random selection MLM’s perfor- mance. Results show that MLM is an computationally efficient way to train large training sets. MLM reduces the complexity of the analysis and provides computational benefits against other models. Proposed framework offers tools that can improve the MLM’s classification time and the accuracy rate compared to the MLM with randomly picked training points.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSPIE
dc.relation.ispartofImage and Signal Processing for Remote Sensing XXVI
dc.relation.ispartofseriesProceedings of SPIE : the International Society for Optical Engineering
dc.rightsIn Copyright
dc.subject.otherHyperspectral Imaging
dc.subject.otherMinimal Learning Machine
dc.subject.otherClassification
dc.subject.otherPrincipal Component Analysis
dc.subject.otherDistance Learning
dc.titleMinimal learning machine in hyperspectral imaging classification
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202011026474
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-5106-3879-2
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn0277-786X
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 SPIE
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceSPIE Remote Sensing
dc.relation.grantnumber327862
dc.subject.ysokoneoppiminen
dc.subject.ysokuvantaminen
dc.subject.ysospektrikuvaus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p3532
jyx.subject.urihttp://www.yso.fi/onto/yso/p26364
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1117/12.2573578
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis study is partly funded by Jane and Aatos Erkko Foundation (Grant No. 170015) and Academy of Finland(Grant No. 327862)
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright