Minimal learning machine in anomaly detection from hyperspectral images
Pölönen, I., Riihiaho, K., Hakola, A.-M., & Annala, L. (2020). Minimal learning machine in anomaly detection from hyperspectral images. In N. Paparoditis, C. Mallet, F. Lafarge, J. Jiang, A. Shaker, H. Zhang, X. Liang, B. Osmanoglu, U. Soergel, E. Honkavaara, M. Scaioni, J. Zhang, A. Peled, L. Wu, R. Li, M. Yoshimura, K. Di, O. Altan, H. M. Abdulmuttalib, & F. S. Faruque (Eds.), XXIV ISPRS Congress, Commission III (pp. 467-472). International Society for Photogrammetry and Remote Sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-467-2020
Published in
International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesDate
2020Copyright
© Authors 2020.
Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel distance-based classification algorithm, which is now modified to detect anomalies. Besides being computationally efficient, minimal learning machine is also easy to implement. Based on the results, we show that minimal learning machine is efficient in detecting global anomalies from the hyperspectral data with low false alarm rate.
Publisher
International Society for Photogrammetry and Remote SensingConference
ISPRS CongressIs part of publication
XXIV ISPRS Congress, Commission IIIISSN Search the Publication Forum
1682-1750Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/41834791
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Academy Project, AoF
Additional information about funding
This study is partly funded by Academy of Finland (Grant 327862).License
Related items
Showing items with similar title or keywords.
-
Piecewise anomaly detection using minimal learning machine for hyperspectral images
Raita-Hakola, A.-M.; Pölönen, I. (Copernicus Publications, 2021)Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are ... -
Editorial for the special issue "Frontiers in spectral imaging and 3D technologies for geospatial solutions"
Honkavaara, Eija; Karantzalos, Konstantinos; Liang, Xinlian; Nocerino, Erica; Pölönen, Ilkka; Rönnholm, Petri (MDPI, 2019)This Special Issue hosts papers on the integrated use of spectral imaging and 3D technologies in remote sensing, including novel sensors, evolving machine learning technologies for data analysis, and the utilization of ... -
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
Penttilä, Jeremias (2017)Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan ... -
Updating strategies for distance based classification model with recursive least squares
Raita-Hakola, Anna-Maria; Pölönen, Ilkka (Copernicus Publications, 2022)The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the ... -
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ...