Data-driven Interactive Multiobjective Optimization : Challenges and a Generic Multi-agent Architecture
Afsar, B., Podkopaev, D., & Miettinen, K. (2020). Data-driven Interactive Multiobjective Optimization : Challenges and a Generic Multi-agent Architecture. In M. Cristani, C. Toro, C. Zanni-Merk, R. J. Howlett, & R. J. Jain (Eds.), KES 2020 : Proceedings of the 24th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (pp. 281-290). Elsevier BV. Procedia Computer Science, 176. https://doi.org/10.1016/j.procs.2020.08.030
Julkaistu sarjassa
Procedia Computer ScienceToimittajat
Päivämäärä
2020Oppiaine
Multiobjective Optimization GroupLaskennallinen tiedePäätöksen teko monitavoitteisestiMultiobjective Optimization GroupComputational ScienceDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© 2020 The Author(s). Published by Elsevier B.V.
In many decision making problems, a decision maker needs computer support in finding a good compromise between multiple conflicting objectives that need to be optimized simultaneously. Interactive multiobjective optimization methods have a lot of potential for solving such problems. However, the growth of complexity in problem formulations and the abundance of data bring new challenges to be addressed by decision makers and method developers. On the other hand, advances in the field of artificial intelligence provide opportunities in this respect.
We identify challenges and propose directions of addressing them in interactive multiobjective optimization methods with the help of multiple intelligent agents. We describe a generic architecture of enhancing interactive methods with specialized agents to enable more efficient and reliable solution processes and better support for decision makers.
Julkaisija
Elsevier BVKonferenssi
International Conference on Knowledge-Based and Intelligent Information & Engineering SystemsKuuluu julkaisuun
KES 2020 : Proceedings of the 24th International Conference on Knowledge-Based and Intelligent Information & Engineering SystemsISSN Hae Julkaisufoorumista
1877-0509Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/42394854
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Profilointi, SALisätietoja rahoituksesta
This research was partly funded by the Academy of Finland (grants 311877 and 322221). The research is relatedto the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyväskylä.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
Saini, Bhupinder Singh; Chakrabarti, Debalay; Chakraborti, Nirupam; Shavazipour, Babooshka; Miettinen, Kaisa (Elsevier BV, 2023)Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation ... -
On Combining Explainable Artificial Intelligence and Interactive Multiobjective Optimization in Data-Driven Decision Support
Hakanen, Jussi; Ojalehto, Vesa; Saarela, Mirka; Äyrämö, Sami (International Society on Multiple Criteria Decision Making, 2019) -
Interacting with intelligent agents : key issues in agent-based decision support system design
Liu, Shenghua (University of Jyväskylä, 2010) -
Towards explainable interactive multiobjective optimization : R-XIMO
Misitano, Giovanni; Afsar, Bekir; Lárraga, Giomara; Miettinen, Kaisa (Springer Science and Business Media LLC, 2022)In interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.