Show simple item record

dc.contributor.authorHankaniemi, Minna M.
dc.contributor.authorBaikoghli, Mo A.
dc.contributor.authorStone, Virginia M.
dc.contributor.authorXing, Li
dc.contributor.authorVäätäinen, Outi
dc.contributor.authorSoppela, Saana
dc.contributor.authorSioofy-Khojine, Amirbabak
dc.contributor.authorSaarinen, Niila V. V.
dc.contributor.authorOu, Tingwei
dc.contributor.authorAnson, Brandon
dc.contributor.authorHyöty, Heikki
dc.contributor.authorMarjomäki, Varpu
dc.contributor.authorFlodström-Tullberg, Malin
dc.contributor.authorCheng, R. H.
dc.contributor.authorHytönen, Vesa P.
dc.contributor.authorLaitinen, Olli H.
dc.date.accessioned2020-09-08T07:49:06Z
dc.date.available2020-09-08T07:49:06Z
dc.date.issued2020
dc.identifier.citationHankaniemi, M. M., Baikoghli, M. A., Stone, V. M., Xing, L., Väätäinen, O., Soppela, S., Sioofy-Khojine, A., Saarinen, N. V.V., Ou, T., Anson, B., Hyöty, H., Marjomäki, V., Flodström-Tullberg, M., Cheng, R. H., Hytönen, V. P., & Laitinen, O. H. (2020). Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine. <i>Microorganisms</i>, <i>8</i>(9), Article 1287. <a href="https://doi.org/10.3390/microorganisms8091287" target="_blank">https://doi.org/10.3390/microorganisms8091287</a>
dc.identifier.otherCONVID_41914365
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71670
dc.description.abstractCoxsackievirus B (CVB) enteroviruses are common pathogens that can cause acute and chronic myocarditis, dilated cardiomyopathy, aseptic meningitis, and they are hypothesized to be a causal factor in type 1 diabetes. The licensed enterovirus vaccines and those currently in clinical development are traditional inactivated or live attenuated vaccines. Even though these vaccines work well in the prevention of enterovirus diseases, new vaccine technologies, like virus-like particles (VLPs), can offer important advantages in the manufacturing and epitope engineering. We have previously produced VLPs for CVB3 and CVB1 in insect cells. Here, we describe the production of CVB3-VLPs with enhanced production yield and purity using an improved purification method consisting of tangential flow filtration and ion exchange chromatography, which is compatible with industrial scale production. We also resolved the CVB3-VLP structure by Cryo-Electron Microscopy imaging and single particle reconstruction. The VLP diameter is 30.9 nm on average, and it is similar to Coxsackievirus A VLPs and the expanded enterovirus cell-entry intermediate (the 135s particle), which is ~2 nm larger than the mature virion. High neutralizing and total IgG antibody levels, the latter being a predominantly Th2 type (IgG1) phenotype, were detected in C57BL/6J mice immunized with non-adjuvanted CVB3-VLP vaccine. The structural and immunogenic data presented here indicate the potential of this improved methodology to produce highly immunogenic enterovirus VLP-vaccines in the future.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesMicroorganisms
dc.rightsCC BY 4.0
dc.subject.otherCoxsackievirus B (CVB)
dc.subject.othervaccine
dc.subject.othervirus-like particle (VLP)
dc.titleStructural Insight into CVB3-VLP Non-Adjuvanted Vaccine
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202009085777
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineCell and Molecular Biologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn2076-2607
dc.relation.numberinseries9
dc.relation.volume8
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysoenterovirukset
dc.subject.ysorokotteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p20689
jyx.subject.urihttp://www.yso.fi/onto/yso/p15634
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/microorganisms8091287
jyx.fundinginformationThis research was funded by The Academy of Finland, grant number 309455 (M.M.H.); Business Finland [Project THERDIAB 1843/31/2014]; FiDiPro grant NOVAC Dnro 1913/31/2012]; The Strategic Research Program in Diabetes at Karolinska Institutet (M.F.-T.); the Swedish Child Diabetes Foundation (V.S. and M.F.-T.), the Swedish Medical Research Council (M.F-T., 2017-02020); Business Finland (FiDiPro grant 1913/31/2012) (R.H.C.), the Academy of Finland (grant 266492) (R.H.C.), the National Institute of Food and Agriculture and the National Institutes of Health (grants: AI095382, EB021230, CA198880) (R.H.C.). Vactech Ltd., ArcDia Ltd., JILAB Ltd. and Finnmedi Research Ltd. are acknowledged for their contribution within THERDIAB. We acknowledge Biocenter Finland for the infrastructure support.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0