Hidden attractors and multistability in a modified Chua’s circuit
Wang, N., Zhang, G., Kuznetsov, N., & Bao, H. (2021). Hidden attractors and multistability in a modified Chua’s circuit. Communications in Nonlinear Science and Numerical Simulation, 92, Article 105494. https://doi.org/10.1016/j.cnsns.2020.105494
Julkaistu sarjassa
Communications in Nonlinear Science and Numerical SimulationPäivämäärä
2021Tekijänoikeudet
© 2020 Elsevier B.V. All rights reserved.
The first hidden chaotic attractor was discovered in a dimensionless piecewise-linear Chua’s system with a special Chua’s diode. But designing such physical Chua’s circuit is a challenging task due to the distinct slopes of Chua’s diode. In this paper, a modified Chua’s circuit is implemented using a 5-segment piecewise-linear Chua’s diode. In particular, the coexisting phenomena of hidden attractors and three point attractors are noticed in the entire period-doubling bifurcation route. Attraction basins of different coexisting attractors are explored. It is demonstrated that the hidden attractors have very small basins of attraction not being connected with any fixed point. The PSIM circuit simulations and DSP-assisted experiments are presented to illustrate the existence of hidden attractors and coexisting attractors.
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
1007-5704Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41778104
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported by the National Natural Science Foundation of China under Grant No. 61473202, and the Russian Science Foundation 19-41-02002 (hidden attractors). Ning Wang (CSC No. 202006250146) would like to acknowledge the sponsor from China Scholarship Council.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Hidden attractors in Chua circuit : mathematical theory meets physical experiments
Kuznetsov, Nikolay; Mokaev, Timur; Ponomarenko, Vladimir; Seleznev, Evgeniy; Stankevich, Nataliya; Chua, Leon (Springer Science and Business Media LLC, 2023)After the discovery in early 1960s by E. Lorenz and Y. Ueda of the first example of a chaotic attractor in numerical simulation of a real physical process, a new scientific direction of analysis of chaotic behavior in ... -
Stability and Chaotic Attractors of Memristor-Based Circuit with a Line of Equilibria
Kuznetsov, Nikolay; Mokaev, T. N.; Kudryashova, E. V.; Kuznetsova, O. A.; Mokaev, R. N.; Yuldashev, M. V.; Yuldashev, R. V. (Springer, 2020)This report investigates the stability problem of memristive systems with a line of equilibria on the example of SBT memristor-based Wien-bridge circuit. For the considered system, conditions of local and global partial ... -
Hidden Strange Nonchaotic Attractors
Danca, Marius-F.; Kuznetsov, Nikolay (MDPI AG, 2021)In this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the ... -
The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension
Kuznetsov, N. V.; Mokaev, T. N.; Kuznetsova, O. A.; Kudryashova, E. V. (Springer, 2020)On the example of the famous Lorenz system, the difficulties and opportunities of reliable numerical analysis of chaotic dynamical systems are discussed in this article. For the Lorenz system, the boundaries of global ... -
Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system
Danca, Marius-F.; Fečkan, Michal; Kuznetsov, Nikolay; Chen, Guanrong (Springer, 2018)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.