dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Riihiaho, Kimmo | |
dc.contributor.author | Hakola, Anna-Maria | |
dc.contributor.author | Annala, Leevi | |
dc.contributor.editor | Paparoditis, N. | |
dc.contributor.editor | Mallet, C. | |
dc.contributor.editor | Lafarge, F. | |
dc.contributor.editor | Jiang, J. | |
dc.contributor.editor | Shaker, A. | |
dc.contributor.editor | Zhang, H. | |
dc.contributor.editor | Liang, X. | |
dc.contributor.editor | Osmanoglu, B. | |
dc.contributor.editor | Soergel, U. | |
dc.contributor.editor | Honkavaara, E. | |
dc.contributor.editor | Scaioni, M. | |
dc.contributor.editor | Zhang, J. | |
dc.contributor.editor | Peled, A. | |
dc.contributor.editor | Wu, L. | |
dc.contributor.editor | Li, R. | |
dc.contributor.editor | Yoshimura, M. | |
dc.contributor.editor | Di, K. | |
dc.contributor.editor | Altan, O. | |
dc.contributor.editor | Abdulmuttalib, H. M. | |
dc.contributor.editor | Faruque, F. S. | |
dc.date.accessioned | 2020-09-01T07:47:27Z | |
dc.date.available | 2020-09-01T07:47:27Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Pölönen, I., Riihiaho, K., Hakola, A.-M., & Annala, L. (2020). Minimal learning machine in anomaly detection from hyperspectral images. In N. Paparoditis, C. Mallet, F. Lafarge, J. Jiang, A. Shaker, H. Zhang, X. Liang, B. Osmanoglu, U. Soergel, E. Honkavaara, M. Scaioni, J. Zhang, A. Peled, L. Wu, R. Li, M. Yoshimura, K. Di, O. Altan, H. M. Abdulmuttalib, & F. S. Faruque (Eds.), <i>XXIV ISPRS Congress, Commission III</i> (pp. 467-472). International Society for Photogrammetry and Remote Sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020. <a href="https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-467-2020" target="_blank">https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-467-2020</a> | |
dc.identifier.other | CONVID_41834791 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/71570 | |
dc.description.abstract | Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel distance-based classification algorithm, which is now modified to detect anomalies. Besides being computationally efficient, minimal learning machine is also easy to implement. Based on the results, we show that minimal learning machine is efficient in detecting global anomalies from the hyperspectral data with low false alarm rate. | en |
dc.format.extent | 1722 | |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | International Society for Photogrammetry and Remote Sensing | |
dc.relation.ispartof | XXIV ISPRS Congress, Commission III | |
dc.relation.ispartofseries | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
dc.rights | CC BY 4.0 | |
dc.subject.other | minimal learning machine | |
dc.subject.other | hyperspectral imaging | |
dc.subject.other | anomaly detection | |
dc.subject.other | remote sensing | |
dc.title | Minimal learning machine in anomaly detection from hyperspectral images | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202009015699 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 467-472 | |
dc.relation.issn | 1682-1750 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors 2020. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | ISPRS Congress | |
dc.relation.grantnumber | 327862 | |
dc.subject.yso | kaukokartoitus | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | spektrikuvaus | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2521 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26364 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.5194/isprs-archives-XLIII-B3-2020-467-2020 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This study is partly funded by Academy of Finland (Grant 327862). | |
dc.type.okm | A4 | |