Näytä suppeat kuvailutiedot

dc.contributor.authorFässler, Katrin
dc.contributor.authorOrponen, Tuomas
dc.contributor.authorRigot, Séverine
dc.date.accessioned2020-08-26T11:34:20Z
dc.date.available2020-08-26T11:34:20Z
dc.date.issued2020
dc.identifier.citationFässler, K., Orponen, T., & Rigot, S. (2020). Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group. <i>Transactions of the American Mathematical Society</i>, <i>373</i>(8), 5957-5996. <a href="https://doi.org/10.1090/tran/8146" target="_blank">https://doi.org/10.1090/tran/8146</a>
dc.identifier.otherCONVID_41779689
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71521
dc.description.abstractA Semmes surface in the Heisenberg group is a closed set $ S$ that is upper Ahlfors-regular with codimension one and satisfies the following condition, referred to as Condition B. Every ball $ B(x,r)$ with $ x \in S$ and $ 0 < r < \operatorname {diam} S$ contains two balls with radii comparable to $ r$ which are contained in different connected components of the complement of $ S$. Analogous sets in Euclidean spaces were introduced by Semmes in the late 1980s. We prove that Semmes surfaces in the Heisenberg group are lower Ahlfors-regular with codimension one and have big pieces of intrinsic Lipschitz graphs. In particular, our result applies to the boundary of chord-arc domains and of reduced isoperimetric sets. The proof of the main result uses the concept of quantitative non-monotonicity developed by Cheeger, Kleiner, Naor, and Young. The approach also yields a new proof for the big pieces of Lipschitz graphs property of Semmes surfaces in Euclidean spaces.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Mathematical Society
dc.relation.ispartofseriesTransactions of the American Mathematical Society
dc.rightsCC BY-NC-ND 4.0
dc.titleSemmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202008265662
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange5957-5996
dc.relation.issn0002-9947
dc.relation.numberinseries8
dc.relation.volume373
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 American Mathematical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1090/tran/8146
jyx.fundinginformationThe first author was supported by Swiss National Science Foundation via the project Intrinsic rectifiability and mapping theory on the Heisenberg group, grant no. $161299$. The second author was supported by the Academy of Finland via the project Quantitative rectifiability in Euclidean and non-Euclidean spaces, grant no. $309365$, and by the University of Helsinki via the project Quantitative rectifiability of sets and measures in Euclidean spaces and Heisenberg groups, grant no. $75160012$. The third author was partially supported by the French National Research Agency, Sub-Riemannian Geometry and Interactions ANR-15-CE40-0018 project.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0