dc.contributor.author | Liu, Wenya | |
dc.contributor.author | Zhang, Chi | |
dc.contributor.author | Wang, Xiaoyu | |
dc.contributor.author | Xu, Jing | |
dc.contributor.author | Chang, Yi | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2020-08-24T09:17:39Z | |
dc.date.available | 2020-08-24T09:17:39Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Liu, W., Zhang, C., Wang, X., Xu, J., Chang, Y., Ristaniemi, T., & Cong, F. (2020). Functional connectivity of major depression disorder using ongoing EEG during music perception. <i>Clinical Neurophysiology</i>, <i>131</i>(10), 2413-2422. <a href="https://doi.org/10.1016/j.clinph.2020.06.031" target="_blank">https://doi.org/10.1016/j.clinph.2020.06.031</a> | |
dc.identifier.other | CONVID_41692444 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/71500 | |
dc.description.abstract | Objective
The functional connectivity (FC) of major depression disorder (MDD) has not been well studied under naturalistic and continuous stimuli conditions. In this study, we investigated the frequency-specific FC of MDD patients exposed to conditions of music perception using ongoing electroencephalogram (EEG).
Methods
First, we applied phase lag index (PLI) method to calculate the connectivity matrices and graph theory-based methods to measure the topology of brain networks across different frequency bands. Then, classification methods were adopted to identify the most discriminate frequency band for the diagnosis of MDD.
Results
During music perception, MDD patients exhibited a decreased connectivity pattern in the delta band but an increased connectivity pattern in the beta band. Healthy people showed a left hemisphere-dominant phenomenon, but MDD patients did not show such a lateralized effect. Support vector machine (SVM) achieved the best classification performance in the beta frequency band with an accuracy of 89.7%, sensitivity of 89.4% and specificity of 89.9%.
Conclusions
MDD patients exhibited an altered FC in delta and beta bands, and the beta band showed a superiority in the diagnosis of MDD.
Significance
Our study provided a promising reference for the diagnosis of MDD, and revealed a new perspective for understanding the topology of MDD brain networks during music perception. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Elsevier BV | |
dc.relation.ispartofseries | Clinical Neurophysiology | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | functional connectivity | |
dc.subject.other | ongoing EEG | |
dc.subject.other | major depression disorder | |
dc.subject.other | music perception | |
dc.subject.other | naturalistic stimuli | |
dc.title | Functional connectivity of major depression disorder using ongoing EEG during music perception | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202008245636 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 2413-2422 | |
dc.relation.issn | 1388-2457 | |
dc.relation.numberinseries | 10 | |
dc.relation.volume | 131 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 Elsevier | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | ärsykkeet | |
dc.subject.yso | masennus | |
dc.subject.yso | musiikki | |
dc.subject.yso | EEG | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2943 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7995 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1808 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3328 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.clinph.2020.06.031 | |
jyx.fundinginformation | This work was supported by National Natural Science Foundation of China (Grant No.91748105 & Grant No.81471742); the Fundamental Research Funds for the Central Universities [DUT2019] in Dalian University of Technology in China; and the scholarships from China scholarship Council (No. 201706060263). | |
dc.type.okm | A1 | |