Traces for Function Spaces on Metric Measure Spaces
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2020Tekijänoikeudet
© The Author & University of Jyväskylä
2020:41 | 2021:34 | 2022:21 | 2023:56 | 2024:95 | 2025:4
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-8260-7ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Koskela, P., Soto, T., & Wang, Z. (2017). Traces of weighted function spaces : Dyadic norms and Whitney extensions. Science China Mathematics, 60 (11), 1981-2010. DOI: 10.1007/s11425-017-9148-6
- Artikkeli II: Koskela, Pekka; Wang, Zhuang (2019). Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees. Potential Analysis, First Online. DOI: 10.1007/s11118-019-09808-5
- Artikkeli III: P. Lahti, X. Li and Z. Wang, Traces of Newton-Sobolev, Haj lasz-Sobolev, and BV functions on metric spaces. Annali della Scuola normale superiore di Pisa - Classe di scienze (5), accepted. ArXiv:1911.00533.
- Artikkeli IV: Z. Wang, Characterization of trace spaces on regular trees via dyadic norms. Submitted. ArXiv:2004.03432.
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [880]
- Väitöskirjat [3613]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Hajłasz Capacity Density Condition is Self-improving
Canto, Javier; Vähäkangas, Antti V. (Springer Science and Business Media LLC, 2022)We prove a self-improvement property of a capacity density condition for a nonlocal Hajłasz gradient in complete geodesic spaces with a doubling measure. The proof relates the capacity density condition with boundary ... -
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ... -
Quasispheres and metric doubling measures
Lohvansuu, Atte; Rajala, Kai; Rasimus, Martti (American Mathematical Society, 2018)Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere X is a quasisphere if and only if X is linearly locally connected and carries a weak metric doubling measure, ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
Approximation by uniform domains in doubling quasiconvex metric spaces
Rajala, Tapio (Springer, 2021)We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.