Show simple item record

dc.contributor.authorAbdi, Younes
dc.contributor.authorRistaniemi, Tapani
dc.date.accessioned2020-08-17T10:54:19Z
dc.date.available2020-08-17T10:54:19Z
dc.date.issued2020
dc.identifier.citationAbdi, Y., & Ristaniemi, T. (2020). The Max-Product Algorithm Viewed as Linear Data-Fusion : A Distributed Detection Scenario. <i>IEEE Transactions on Wireless Communications</i>, <i>19</i>(11), 7585-7597. <a href="https://doi.org/10.1109/twc.2020.3012910" target="_blank">https://doi.org/10.1109/twc.2020.3012910</a>
dc.identifier.otherCONVID_41697701
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71401
dc.description.abstractIn this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product algorithm is obtained by an optimal linear data-fusion scheme and the behavior of the max-product algorithm is very similar to the behavior of the sum-product algorithm. Consequently, we demonstrate that the optimal performance of the max-product iteration is closely achieved via a linear version of the sum-product algorithm, which is optimized based on statistics received at each node from its one-hop neighbors. Finally, we verify our observations via computer simulations.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Transactions on Wireless Communications
dc.rightsIn Copyright
dc.subject.otherstatistical inference
dc.subject.otherdistributed systems
dc.subject.othermax-product algorithm
dc.subject.othersum-product algorithm
dc.subject.otherlinear data-fusion
dc.subject.otherMarkov random fields
dc.subject.otherfactor graphs
dc.subject.otherspectrum sensing
dc.titleThe Max-Product Algorithm Viewed as Linear Data-Fusion : A Distributed Detection Scenario
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202008175537
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange7585-7597
dc.relation.issn1536-1276
dc.relation.numberinseries11
dc.relation.volume19
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 IEEE
dc.rights.accesslevelopenAccessfi
dc.subject.ysoalgoritmit
dc.subject.ysoMarkovin ketjut
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p13075
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/twc.2020.3012910
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright