The Max-Product Algorithm Viewed as Linear Data-Fusion : A Distributed Detection Scenario
Abstract
In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product algorithm is obtained by an optimal linear data-fusion scheme and the behavior of the max-product algorithm is very similar to the behavior of the sum-product algorithm. Consequently, we demonstrate that the optimal performance of the max-product iteration is closely achieved via a linear version of the sum-product algorithm, which is optimized based on statistics received at each node from its one-hop neighbors. Finally, we verify our observations via computer simulations.
Main Authors
Format
Articles
Research article
Published
2020
Series
Subjects
Publication in research information system
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202008175537Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
1536-1276
DOI
https://doi.org/10.1109/twc.2020.3012910
Language
English
Published in
IEEE Transactions on Wireless Communications
Citation
- Abdi, Y., & Ristaniemi, T. (2020). The Max-Product Algorithm Viewed as Linear Data-Fusion : A Distributed Detection Scenario. IEEE Transactions on Wireless Communications, 19(11), 7585-7597. https://doi.org/10.1109/twc.2020.3012910
Copyright© 2020 IEEE