Näytä suppeat kuvailutiedot

dc.contributor.authorGirka, Anastasiia
dc.contributor.authorKulmala, Juha-Pekka
dc.contributor.authorÄyrämö, Sami
dc.date.accessioned2020-07-13T06:25:26Z
dc.date.available2020-07-13T06:25:26Z
dc.date.issued2020
dc.identifier.citationGirka, A., Kulmala, J.-P., & Äyrämö, S. (2020). Deep learning approach for prediction of impact peak appearance at ground reaction force signal of running activity. <i>Computer Methods in Biomechanics and Biomedical Engineering</i>, <i>23</i>(14), 1052-1059. <a href="https://doi.org/10.1080/10255842.2020.1786072" target="_blank">https://doi.org/10.1080/10255842.2020.1786072</a>
dc.identifier.otherCONVID_41554418
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71131
dc.description.abstractProtruding impact peak is one of the features of vertical ground reaction force (GRF) that is related to injury risk while running. The present research is dedicated to predicting GRF impact peak appearance by setting a binary classification problem. Kinematic data, namely a number of raw signals in the sagittal plane, collected by the Vicon motion capture system (Oxford Metrics Group, UK) were employed as predictors. Therefore, the input data for the predictive model are presented as a multi-channel time series. Deep learning techniques, namely five convolutional neural network (CNN) models were applied to the binary classification analysis, based on a Multi-Layer Perceptron (MLP) classifier, support vector machine (SVM), logistic regression, k-nearest neighbors (kNN), and random forest algorithms. SVM, logistic regression, and random forest classifiers demonstrated performances that do not statistically significantly differ. The best classification accuracy achieved is 81.09% ± 2.58%. Due to good performance of the models, this study serves as groundwork for further application of deep learning approaches to predicting kinetic information based on this kind of input data.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherTaylor & Francis
dc.relation.ispartofseriesComputer Methods in Biomechanics and Biomedical Engineering
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherCNN
dc.subject.otherbinary classification
dc.subject.otherrunning gait analysis
dc.subject.otherrisk assessment
dc.subject.otherforce platform
dc.titleDeep learning approach for prediction of impact peak appearance at ground reaction force signal of running activity
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202007135298
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1052-1059
dc.relation.issn1025-5842
dc.relation.numberinseries14
dc.relation.volume23
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 The Authors. Published by Informa UK Limited, trading as Taylor & Francis Group
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoliikeanalyysi
dc.subject.ysoneuroverkot
dc.subject.ysokoneoppiminen
dc.subject.ysorasitusvammat
dc.subject.ysoliikkeenkaappaus
dc.subject.ysojuoksu
dc.subject.ysobiomekaniikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24952
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p5844
jyx.subject.urihttp://www.yso.fi/onto/yso/p27199
jyx.subject.urihttp://www.yso.fi/onto/yso/p9087
jyx.subject.urihttp://www.yso.fi/onto/yso/p20292
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1080/10255842.2020.1786072
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0