Näytä suppeat kuvailutiedot

dc.contributor.authorPulkkinen, Jani
dc.date.accessioned2020-06-30T12:12:47Z
dc.date.available2020-06-30T12:12:47Z
dc.date.issued2020
dc.identifier.isbn978-951-39-8197-6
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/70995
dc.description.abstractAs aquaculture production continues to increase, new technologies have been developed to minimize nutrient emissions or even recover them into other applications. Recirculating aquaculture systems (RAS) may increase aquaculture production in areas where water source is limited, and the amount of nutrient discharges affects the granting of environmental licenses. The cost–effectiveness of RAS limits the future expansion of the technology, and in particular, the management of the microbial environment has become one of the main challenges affecting the operation of RAS farms. In this dissertation, I examined the microbiology of RAS. The work focused on the nitrification process and microbial community composition in bioreactors and their connections to changes in water quality. Nitrification may be rapidly started by adding ammonia and nitrite salts to the system. I found that bioreactors had diverse microbial communities that affected several water quality parameters. The main function of microbial communities found in freshwater RAS compartments was the degradation of carbohydrates, amino acids, and lipids. When RAS was changed to use brackish water, microbial communities were seen to slowly adapt. However, the degradation of carbohydrates decreased, which was also reflected in elevated concentrations of total organic carbon and the dissolved organic matter in the water. Desinfectant (peracetic acid) addition improved water quality and did not disturb biofilter microbial communities. The fixed bed bioreactors (FBBR) trap solids and organic matter inside the reactor, but potentially also host bacterial communities specialised in the degradation of organic matter. Nitrification performance was decreased in the FBBR, but this may have been caused by the incorrect design of the reactor. The moving bed bioreactors (MBBR) may release the excess bacterial biomass into the water, but the technique kept the biofilm thin and allowed for a functionally diverse bacterial community. Keywords: 16S rRNA gene; bacterial communities; microbiome; next-generation sequencing; nitrification; rainbow trout; quantitative PCR.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesJYU Dissertations
dc.relation.haspart<b>Artikkeli I:</b> Pulkkinen J.T., Kiuru T., Aalto S.L., Koskela J. & Vielma J. 2018. Startup and effects of relative water renewal rate on water quality and growth of rainbow trout (Oncorhynchus mykiss) in a unique RAS research platform. <i>Aquacultural Engineering 82: 38–45.</i> <a href="http://doi.org/10.1016/j.aquaeng.2018.06.003"target="_blank"> DOI: 10.1016/j.aquaeng.2018.06.003</a>
dc.relation.haspart<b>Artikkeli II:</b> Pulkkinen J.T., Eriksson-Kallio A.M., Aalto S.L., Tiirola M., Koskela J., Kiuru T. & Vielma J. 2019. The effects of different combinations of fixed and moving bed bioreactors on rainbow trout (Oncorhynchus mykiss) growth and health, water quality and nitrification in recirculating aquaculture systems. <i>Aquacultural Engineering 85: 98–105.</i> <a href="http://doi.org/10.1016/j.aquaeng.2019.03.004"target="_blank"> DOI: 10.1016/j.aquaeng.2019.03.004</a>
dc.relation.haspart<b>Artikkeli III:</b> Suurnäkki S., Pulkkinen J.T., Lindholm-Lehto P.C., Tiirola M. & Aalto S.L. 2020. The effect of peracetic acid on microbial community, water quality, nitrification and rainbow trout (Oncorhynchus mykiss) performance in recirculating aquaculture systems. <i>Aquaculture 516, 734534.</i> <a href="http://doi.org/10.1016/j.aquaculture.2019.734534"target="_blank"> DOI: 10.1016/j.aquaculture.2019.734534</a>
dc.relation.haspart<b>Artikkeli IV:</b> Pulkkinen J.T., Aalto S.L., Suurnäkki S., Vielma J. & Tiirola M. 2020. Microbiology of different compartments of freshwater and brackish water recirculating aquaculture systems. <i>Submitted manuscript.</i>
dc.rightsIn Copyright
dc.subjectvesiviljely (kalatalous)
dc.subjectkalanviljely
dc.subjectkirjolohi
dc.subjectvedenpuhdistus
dc.subjectbiologinen puhdistus
dc.subjectsuodatus
dc.subjectaineiden kierto
dc.subjectnitrifikaatio
dc.subjectbioreaktorit
dc.subjectmikrobisto
dc.subjectbakteerit
dc.subjectDNA-analyysi
dc.subjectpolymeraasiketjureaktio
dc.subject165 rRNA gene
dc.subjectbacterial communities
dc.subjectmicrobiome
dc.subjectnext-generation sequencing
dc.subjectnitrification
dc.subjectrainbow trout
dc.subjectquantitative PCR
dc.titleMicrobiology of biological filters in recirculating aquaculture systems
dc.typeDiss.
dc.identifier.urnURN:ISBN:978-951-39-8197-6
dc.contributor.tiedekuntaFaculty of Mathematics and Scienceen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.relation.issn2489-9003
dc.rights.copyright© The Author & University of Jyväskylä
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright