The effect of peracetic acid on microbial community, water quality, nitrification and rainbow trout (Oncorhynchus mykiss) performance in recirculating aquaculture systems
Suurnäkki, S., Pulkkinen, J. T., Lindholm-Lehto, P. C., Tiirola, M., & Aalto, S. L. (2020). The effect of peracetic acid on microbial community, water quality, nitrification and rainbow trout (Oncorhynchus mykiss) performance in recirculating aquaculture systems. Aquaculture, 516, Article 734534. https://doi.org/10.1016/j.aquaculture.2019.734534
Julkaistu sarjassa
AquacultureTekijät
Päivämäärä
2020Tekijänoikeudet
© 2019 Elsevier B.V.
Microbial biofilters control water quality and enable the overall function of recirculation aquaculture systems (RAS). Changes in environmental conditions can affect the abundance and interactions of the diverse microbial populations of the biofilter, affecting nitrification of harmful ammonium and thus fish health. Here, we examined the effect of different application frequencies (0, 1, 2 and 4 times per week) of a common disinfectant, peracetic acid (PAA, applied 1.1 mg l−1 twice per day), on biofilter microbial communities, focusing especially on nitrifying microbial groups and using a high throughput sequencing of 16S rRNA gene and quantitative PCR (qPCR). In addition, we measured biofilter nitrification rates, water quality parameters, and fish performance. Although PAA additions did not significantly change the overall microbial community composition or abundance, the abundance of ammonia-oxidizing bacteria (AOB) and nitrate-oxidizing bacteria (NOB) first decreased at the beginning of the experiment but increased in numbers towards the end of the experiment with frequent PAA applications. PAA application decreased the nitrification rate, but increased the water quality in terms of reduced ammonium levels. PAA application did not significantly affect fish growth, but higher mortality was observed with the highest PAA application level of 4 times per week. These results suggest that when applied before the fish tank, PAA can be used for temporary water quality improvement without disturbing microbial communities. However, the application frequency required for persistent water quality improvement caused increased mortality.
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0044-8486Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/33254388
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
We greatly appreciate the fish husbandry and water sampling of the Natural Resources Institute Finland Laukaa fish farm personnel. We gratefully acknowledge Lars-Flemming Pedersen for his helpful information about PAA dosages. This experiment was funded by the European Union through the European Maritime and Fisheries Fund (EMFF) and by the Ministry of Agriculture and Forestry of Finland.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The effects of different combinations of fixed and moving bed bioreactors on rainbow trout (Oncorhynchus mykiss) growth and health, water quality and nitrification in recirculating aquaculture systems
Pulkkinen, Jani T.; Eriksson-Kallio, Anna M.; Aalto, Sanni L.; Tiirola, Marja; Koskela, Juha; Kiuru, Tapio; Vielma, Jouni (Elsevier BV, 2019)The effect of bioreactor design on nitrification efficiency has been well studied, but less is known about the overall impacts on water quality. Besides nitrification, submerged fixed bed bioreactors (FBBR) trap fine solid ... -
Effect of peracetic acid on levels of geosmin, 2-methylisoborneol, and their potential producers in a recirculating aquaculture system for rearing rainbow trout (Oncorhynchus mykiss)
Lindholm-Lehto, P. C.; Suurnäkki, Suvi; Pulkkinen, Jani; Aalto, Sanni L.; Tiirola, Marja; Vielma, J. (Elsevier BV, 2019)In recirculating aquaculture systems (RAS)s, off-flavors and odors, mainly caused by geosmin (GSM) and 2-methylisoborneol (MIB), can accumulate in the flesh of fish from RAS water, reducing the profitability of production. ... -
Is Aquaponics Beneficial in Terms of Fish and Plant Growth and Water Quality in Comparison to Separate Recirculating Aquaculture and Hydroponic Systems?
Atique, Faiqa; Lindholm-Lehto, Petra; Pirhonen, Juhani (MDPI AG, 2022)Aquaponics is a technique where a recirculating aquaculture system (RAS) and hydroponics are integrated to grow plants and fish in a closed system. We investigated if the growth of rainbow trout (Oncorhynchus mykiss) and ... -
Effect of ozone and hydrogen peroxide on off-flavor compounds and water quality in a recirculating aquaculture system
Pettersson, Samu Johannes; Lindholm-Lehto, Petra Camilla; Pulkkinen, Jani Tapio; Kiuru, Tapio; Vielma, Jouni (Elsevier BV, 2022)The recirculating aquaculture system (RAS) is an ever-developing technology for producing fish with a low environmental impact. However, off-flavors can be a major problem in RAS fish production. Off-flavor compounds are ... -
Salinity affects nitrate removal and microbial composition of denitrifying woodchip bioreactors treating recirculating aquaculture system effluents
von Ahnen, Mathis; Aalto, Sanni L.; Suurnäkki, Suvi; Tiirola, Marja; Pedersen, Per Bovbjerg (Elsevier BV, 2019)This study investigated the effect of salinity on microbial composition and denitrification capacity of woodchip bioreactors treating recirculating aquaculture system (RAS) effluents. Twelve laboratory-scale woodchip ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.