Näytä suppeat kuvailutiedot

dc.contributor.authorCronin, Neil J.
dc.contributor.authorFinni, Taija
dc.contributor.authorSeynnes, Olivier
dc.date.accessioned2020-06-24T11:47:25Z
dc.date.available2020-06-24T11:47:25Z
dc.date.issued2020
dc.identifier.citationCronin, N. J., Finni, T., & Seynnes, O. (2020). Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images. <i>Computer methods and programs in biomedicine</i>, <i>196</i>, Article 105583. <a href="https://doi.org/10.1016/j.cmpb.2020.105583" target="_blank">https://doi.org/10.1016/j.cmpb.2020.105583</a>
dc.identifier.otherCONVID_35935057
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/70423
dc.description.abstractBackground and Objective Deep learning approaches are common in image processing, but often rely on supervised learning, which requires a large volume of training images, usually accompanied by hand-crafted labels. As labelled data are often not available, it would be desirable to develop methods that allow such data to be compiled automatically. In this study, we used a Generative Adversarial Network (GAN) to generate realistic B-mode musculoskeletal ultrasound images, and tested the suitability of two automated labelling approaches. Methods We used a model including two GANs each trained to transfer an image from one domain to another. The two inputs were a set of 100 longitudinal images of the gastrocnemius medialis muscle, and a set of 100 synthetic segmented masks that featured two aponeuroses and a random number of ‘fascicles’. The model output a set of synthetic ultrasound images and an automated segmentation of each real input image. This automated segmentation process was one of the two approaches we assessed. The second approach involved synthesising ultrasound images and then feeding these images into an ImageJ/Fiji-based automated algorithm, to determine whether it could detect the aponeuroses and muscle fascicles. Results Histogram distributions were similar between real and synthetic images, but synthetic images displayed less variation between samples and a narrower range. Mean entropy values were statistically similar (real: 6.97, synthetic: 7.03; p = 0.218), but the range was much narrower for synthetic images (6.91 – 7.11 versus 6.30 – 7.62). When comparing GAN-derived and manually labelled segmentations, intersection-over-union values- denoting the degree of overlap between aponeurosis labels- varied between 0.0280 – 0.612 (mean ± SD: 0.312 ± 0.159), and pennation angles were higher for the GAN-derived segmentations (25.1° vs. 19.3 °; p < 0.001). For the second segmentation approach, the algorithm generally performed equally well on synthetic and real images, yielding pennation angles within the physiological range (13.8-20°). Conclusions We used a GAN to generate realistic B-mode ultrasound images, and extracted muscle architectural parameters from these images automatically. This approach could enable generation of large labelled datasets for image segmentation tasks, and may also be useful for data sharing. Automatic generation and labelling of ultrasound images minimises user input and overcomes several limitations associated with manual analysis.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesComputer methods and programs in biomedicine
dc.rightsCC BY 4.0
dc.subject.otherultrasound
dc.subject.othermuscle
dc.subject.otherdeep learning
dc.subject.othermedical imaging
dc.subject.othergenerative adversarial network
dc.subject.othercycleGAN
dc.subject.othersynthetic image
dc.titleUsing deep learning to generate synthetic B-mode musculoskeletal ultrasound images
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202006244613
dc.contributor.laitosLiikuntatieteellinen tiedekuntafi
dc.contributor.laitosFaculty of Sport and Health Sciencesen
dc.contributor.oppiaineBiomekaniikkafi
dc.contributor.oppiaineBiomechanicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0169-2607
dc.relation.volume196
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 the Author(s)
dc.rights.accesslevelopenAccessfi
dc.subject.ysokoneoppiminen
dc.subject.ysolihakset
dc.subject.ysokuvantaminen
dc.subject.ysoultraäänitutkimus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p2784
jyx.subject.urihttp://www.yso.fi/onto/yso/p3532
jyx.subject.urihttp://www.yso.fi/onto/yso/p19405
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.cmpb.2020.105583
jyx.fundinginformationThis research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0