Näytä suppeat kuvailutiedot

dc.contributor.authorAziz, Azmin Azliza
dc.contributor.authorMousavi Abdehgah, Mohsen
dc.contributor.authorTavana, Madjid
dc.contributor.authorNiaki, Seyed Taghi Akhavan
dc.date.accessioned2020-06-22T08:41:05Z
dc.date.available2020-06-22T08:41:05Z
dc.date.issued2020
dc.identifier.citationAziz, A. A., Mousavi Abdehgah, M., Tavana, M., & Niaki, S. T. A. (2020). An Investigation of the Robustness in the Travelling Salesman Problem Routes Using Special Structured Matrices. <i>International Journal of Systems Science</i>, <i>7</i>(2), 172-181. <a href="https://doi.org/10.1080/23302674.2018.1551584" target="_blank">https://doi.org/10.1080/23302674.2018.1551584</a>
dc.identifier.otherCONVID_28884638
dc.identifier.otherTUTKAID_80449
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/70087
dc.description.abstractIn this study, the robustness of the Travelling Salesman Problem (TSP) routes is investigated by recognising the special combinatorial structures of Kalmanson matrices. A recognition algorithm encompassing three procedures based on combinatorial and linear programming (LP) is developed and executed on several randomly generated instances. These procedures produce three lower bounds which provide guarantees on the optimality of the solutions. Computational experiments show that the proposed LP-based procedure performs efficiently well across all problem dimensions and provides the best lower bounds to the TSP. This is supported by an average deviation of less than 7% between the TSP tour lengths and the lower bounds of the Kalmanson matrices.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherTaylor & Francis
dc.relation.ispartofseriesInternational Journal of Systems Science
dc.rightsIn Copyright
dc.subject.otherTravelling salesman problem
dc.subject.otherrobustness
dc.subject.otherspecial structured matrices
dc.subject.othercombinatorial
dc.subject.otherKalmanson
dc.titleAn Investigation of the Robustness in the Travelling Salesman Problem Routes Using Special Structured Matrices
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202005143208
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2020-05-14T12:15:09Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange172-181
dc.relation.issn0020-7721
dc.relation.numberinseries2
dc.relation.volume7
dc.type.versionacceptedVersion
dc.rights.copyright© 2018 Taylor & Francis
dc.rights.accesslevelopenAccessfi
dc.subject.ysolineaarinen optimointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15483
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1080/23302674.2018.1551584
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright